Sur le morphisme de Barth


Abstract in English

Let ${rm F}$ be a rank-2 semi-stable sheaf on the projective plane, with Chern classes $c_{1}=0,c_{2}=n$. The curve $beta_{rm F}$ of jumping lines of ${rm F}$, in the dual projective plane, has degree $n$. Let ${rm M}_{n}$ be the moduli space of equivalence classes of semi-stables sheaves of rank 2 and Chern classes $(0,n)$ on the projective plane and ${cal C}_{n}$ be the projective space of curves of degree $n$ in the dual projective plane. The Barth morphism $$beta: {rm M}_{n}longrightarrow{cal C}_{n}$$ associates the point $beta_{rm F}$ to the class of the sheaf ${rm F}$. We prove that this morphism is generically injective for $ngeq 4.$ The image of $beta$ is a closed subvariety of dimension $4n-3$ of ${cal C}_{n}$; as a consequence of our result, the degree of this image is given by the Donaldson number of index $4n-3$ of the projective plane.

Download