Do you want to publish a course? Click here

Deformations of chiral algebras and quantum cohomology of toric varieties

211   0   0.0 ( 0 )
 Added by Fedor Malikov
 Publication date 2000
  fields
and research's language is English
 Authors F.Malikov




Ask ChatGPT about the research

We reproduce the quantum cohomology of toric varieties (and of some hypersurfaces in projective spaces) as the cohomology of certain vertex algebras with differential. The deformation technique allows us to compute the cohomology of the chiral de Rham complex over the projective space.



rate research

Read More

143 - Gottfried Barthel 1999
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant open subsets), equivariant intersection cohomology provides a sheaf (of graded modules over a sheaf of graded rings) on that fan space. We prove that this sheaf is a minimal extension sheaf, i.e., that it satisfies three relatively simple axioms which are known to characterize such a sheaf up to isomorphism. In the verification of the second of these axioms, a key role is played by equivariantly formal toric varieties, where equivariant and usual (non-equivariant) intersection cohomology determine each other by Kunneth type formulae. Minimal extension sheaves can be constructed in a purely formal way and thus also exist for non-rational fans. As a consequence, we can extend the notion of an equivariantly formal fan even to this general setup. In this way, it will be possible to introduce virtual intersection cohomology for equivariantly formal non-rational fans.
We show that the infinitesimal deformations of the Brill--Noether locus $W_d$ attached to a smooth non-hyperelliptic curve $C$ are in one-to-one correspondence with the deformations of $C$. As an application, we prove that if a Jacobian $J$ deforms together with a minimal cohomology class out the Jacobian locus, then $J$ is hyperelliptic. In particular, this provides an evidence to a conjecture of Debarre on the classification of ppavs carrying a minimal cohomology class. Finally, we also study simultaneous deformations of Fano surfaces of lines and intermediate Jacobians.
We give a complete description of the equivariant quantum cohomology ring of any smooth hypertoric variety, and find a mirror formula for the quantum differential equation.
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mathbb{Q}}$ of $X$. The ramification over the invariant divisor and the singular invariant divisors of $X$ impose topological constraints on the automorphisms of $X_{mathbb{Q}}$. Considering this proalgebraic space as the toric functor on the adelic complex plane multiplicative semigroup, we calculate its automorphic group. Moreover we show that its vector bundle category is the direct limit of the respective categories of the finite toric varieties coverings defining the proalgebraic toric-completion.
83 - William Fulton 2003
This is an expository lecture, for the Abel bicentennial (Oslo, 2002), describing some recent work on the (small) quantum cohomology ring of Grassmannians and other homogeneous varieties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا