For the nonlocal $T$-periodic Gross-Pitaevsky operator, formal solutions of the Floquet problem asymptotic in small parameter $hbar$, $hbarto0$, up to $O(hbar^{3/2})$ have been constructed. The quasi-energy spectral series found correspond to the closed phase trajectories of the Hamilton-Ehrenfest system which are stable in the linear approximation. The monodromy operator of this equation has been constructed to within $hat O(hbar^{3/2})$ in the class of trajectory-concentrated functions. The Aharonov-Anandan phases have been calculated for the quasi-energy states.
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension-reduction for this nonlinear and nonlocal Schrodinger equation.
We present a method for calculating the Aharonov-Anandan phase for time-independent Hamiltonians that avoids the calculation of evolution operators. We compare the generic method used to calculate the Aharonov-Anandan phase with the method proposed here through four examples; a spin-1/2 particle in a constant magnetic field, an arbitrary infinite-sized Hamiltonian with two known eigenvalues, a Fabry-Perot cavity with one movable mirror and a three mirrors cavity with a slightly transmissive movable middle mirror.
We argue that a complete description of quantum annealing (QA) implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquastic terms in the effective quantum Ising Hamiltonians that are typically used to describe QA with flux-qubits. We explicitly demonstrate the effect of these geometric interactions when QA is performed with a system of one and two coupled flux-qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases QA with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well-known that the direct implementation of non-stoquastic interactions with flux-qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquastic interactions via geometric phases that can be exploited for computational purposes.
It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find a set of polynomial solutions of this quasi-exactly solvable version of the CHEq. These finite solutions encompass previously known polynomial solutions of the Generalized Spheroidal Equation, Razavy Eq., Whittaker-Hill Eq., etc. The analysis is applied to obtain and describe special eigen-functions of the quantum Hamiltonian of two fixed Coulombian centers in two and three dimensions.
The quantum states which satisfy the equality in the generalised uncertainty relation are called intelligent states. We prove the existence of intelligent states for the Anandan-Aharonov uncertainty relation based on the geometry of the quantum state space for arbitrary parametric evolutions of quantum states when the initial and final states are non-orthogonal.
A.L. Lisok
,A.Yu. Trifonov
,A.V. Shapovalov
.
(2006)
.
"Quasi-energy spectral series and the Aharonov-Anandan phase for the nonlocal Gross--Pitaevsky equation"
.
Andrey Trifonov Yurievich
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا