Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds


Abstract in English

For a compact set A in Euclidean space we consider the asymptotic behavior of optimal (and near optimal) N-point configurations that minimize the Riesz s-energy (corresponding to the potential 1/t^s) over all N-point subsets of A, where s>0. For a large class of manifolds A having finite, positive d-dimensional Hausdorff measure, we show that such minimizing configurations have asymptotic limit distribution (as N tends to infinity with s fixed) equal to d-dimensional Hausdorff measure whenever s>d or s=d. In the latter case we obtain an explicit formula for the dominant term in the minimum energy. Our results are new even for the case of the d-dimensional sphere.

Download