No Arabic abstract
We review the relationship between positive operator-valued measures (POVMs) in quantum measurement theory and asymptotic morphisms in the C*-algebra E-theory of Connes and Higson. The theory of asymptotic spectral measures, as introduced by Martinez and Trout (CMP 226), is integrally related to positive asymptotic morphisms on locally compact spaces via an asymptotic Riesz Representation Theorem. Examples and applications to quantum physics, including quantum noise models, semiclassical limits, pure spin one-half systems and quantum information processing will also be discussed.
We study the relationship between POV-measures in quantum theory and asymptotic morphisms in the operator algebra E-theory of Connes-Higson. This is done by introducing the theory of asymptotic PV-measures and their integral correspondence with positive asymptotic morphisms on locally compact spaces. Examples and applications involving various aspects of quantum physics, including quantum noise models, semiclassical limits, strong deformation quantizations, and pure half-spin particles, are also discussed.
Equivariant twisted K theory classes on compact Lie groups $G$ can be realized as families of Fredholm operators acting in a tensor product of a fermionic Fock space and a representation space of a central extension of the loop algebra $LG$ using a supersymmetric Wess-Zumino-Witten model. The aim of the present article is to extend the construction to higher loop algebras using an abelian extension of a $3D$ current algebra. We have only partial success: Instead of true Fredholm operators we have formal algebraic expressions in terms of the generators of the current algebra and an infinite dimensional Clifford algebra. These give rise to sesquilinear forms in a Hilbert bundle which transform in the expected way with respect to $3D$ gauge transformations but do not define true Hilbert space operators.
In 1964 J. M. Luttinger introduced a model for the quantum thermal transport. In this paper we study the spectral theory of the Hamiltonian operator associated to the Luttingers model, with a special focus at the one-dimensional case. It is shown that the (so called) thermal Hamiltonian has a one-parameter family of self-adjoint extensions and the spectrum, the time-propagator group and the Green function are explicitly computed. Moreover, the scattering by convolution-type potentials is analyzed. Finally, also the associated classical problem is completely solved, thus providing a comparison between classical and quantum behavior. This article aims to be a first contribution in the construction of a complete theory for the thermal Hamiltonian.
Let X be a locally compact space, and let A and B be Co(X)-algebras. We define the notion of an asymptotic Co(X)-morphism from A to B and construct representable E-theory groups RE(X;A,B). These are the universal groups on the category of separable Co(X)-algebras that are Co(X)-stable, Co(X)-homotopy-invariant, and half-exact. If A is RKK(X)-nuclear, these groups are naturally isomorphic to Kasparovs representable KK-theory groups RKK(X;A,B). Applications and examples are also discussed.
Callias-type (or Dirac-Schrodinger) operators associated to abstract semifinite spectral triples are introduced and their indices are computed in terms of an associated index pairing derived from the spectral triple. The result is then interpreted as an index theorem for a non-commutative analogue of spectral flow. Both even and odd spectral triples are considered, and both commutative and non-commutative examples are given.