No Arabic abstract
We discuss certain ternary algebraic structures appearing more or less naturally in various domains of theoretical and mathematical physics. Far from being exhaustive, this article is intended above all to draw attention to these algebras, which may find more interesting applications in the years to come.
Symmetry lies at the heart of todays theoretical study of particle physics. Our manuscript is a tutorial introducing foundational mathematics for understanding physical symmetries. We start from basic group theory and representation theory. We then introduce Lie Groups and Lie Algebra and their properties. We next discuss with detail two important Lie Groups in physics Special Unitary and Lorentz Group, with an emphasis on their applications to particle physics. Finally, we introduce field theory and its version of the Noether Theorem. We believe that the materials cover here will prepare undergraduates for future studies in mathematical physics.
Most of the theoretical physics known today is described by using a small number of differential equations. For linear systems, different forms of the hypergeometric or the confluent hypergeometric equations often suffice to describe the system studied. These equations have power series solutions with simple relations between consecutive coefficients and/ or can be represented in terms of simple integral transforms. If the problem is nonlinear, one often uses one form of the Painlev{e} equations. There are important examples, however, where one has to use higher order equations. Heun equation is one of these examples, which recently is often encountered in problems in general relativity and astrophysics. Its special and confluent forms take names as Mathieu, Lam{e} and Coulomb spheroidal equations. For these equations whenever a power series solution is written, instead of a two-way recursion relation between the coefficients in the series, we find one between three or four different ones. An integral transform solution using simpler functions also is not obtainable. The use of this equation in physics and mathematical literature exploded in the later years, more than doubling the number of papers with these solutions in the last decade, compared to time period since this equation was introduced in 1889 up to 2008. We use SCI data to conclude this statement, which is not precise, but in the correct ballpark. Here this equation will be introduced and examples for its use, especially in general relativity literature will be given.
(Draft 3) A generalized differential operator on the real line is defined by means of a limiting process. These generalized derivatives include, as a special case, the classical derivative and current studies of fractional differential operators. All such operators satisfy properties such as the sum, product/quotient rules, chain rule, etc. We study a Sturm-Liouville eigenvalue problem with generalized derivatives and show that the general case is actually a consequence of standard Sturm-Liouville Theory. As an application of the developments herein we find the general solution of a generalized harmonic oscillator. We also consider the classical problem of a planar motion under a central force and show that the general solution of this problem is still generically an ellipse, and that this result is true independently of the choice of the generalized derivatives being used modulo a time shift. The previous result on the generic nature of phase plane orbits is extended to the classical gravitational n-body problem of Newton to show that the global nature of these orbits is independent of the choice of the generalized derivatives being used in defining the force law (modulo a time shift). Finally, restricting the generalized derivatives to a special class of fractional derivatives, we consider the question of motion under gravity with and without resistance and arrive at a new notion of time that depends on the fractional parameter. The results herein are meant to clarify and extend many known results in the literature and intended to show the limitations and use of generalized derivatives and corresponding fractional derivatives.
The Euler-Maclaurin summation formula is generalized to a modified form by expanding the periodic Bernoulli polynomials as its Fourier series and taking cuts, which includes both the Euler-Maclaurin summation formula and the Poission summation formula as special cases. By making use of the modified formula, a numerical summation method is obtained and the error can be controlled. The modified formula is also generalized from one dimention to two dimentions. Examples of its applications in statistical physics are also discussed.
In a previous paper, the general approach for treatment of algebraic equations of different order in gravity theory was exposed, based on the important distinction between covariant and contravariant metric tensor components. In the present second part of the paper it has been shown that a multivariable cubic algebraic equation can also be parametrized by means of complicated, irrational and non-elliptic functions, depending on the elliptic Weierstrass function and its derivative. As a model example, the proposed before cubic algebraic equation for reparametrization invariance of the gravitational Lagrangian has been investigated. This is quite different from the standard algebraic geometry approach, where only the parametrization of two-dimensional cubic algebraic equations has been considered. Also, the possible applications in modern cosmological theories has been commented.