Do you want to publish a course? Click here

g-function flow in perturbed boundary conformal field theories

234   0   0.0 ( 0 )
 Added by Gerard Watts
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

The g-function was introduced by Affleck and Ludwig as a measure of the ground state degeneracy of a conformal boundary condition. We consider this function for perturbations of the conformal Yang-Lee model by bulk and boundary fields using conformal perturbation theory, the truncated conformal space approach and the thermodynamic Bethe Ansatz (TBA). We find that the TBA equations derived by LeClair et al describe the massless boundary flows, up to an overall constant, but are incorrect when one considers a simultaneous bulk perturbation; however the TBA equations do correctly give the `non-universal linear term in the massive case, and the ratio of g-functions for different boundary conditions is also correctly produced. This ratio is related to the Y-system of the Yang-Lee model and by comparing the perturbative expansions of the Y-system and of the g-functions we obtain the exact relation between the UV and IR parameters of the massless perturbed boundary model.



rate research

Read More

102 - Hiroshi Ishikawa 2001
We construct various boundary states in the coset conformal field theory G/H. The G/H theory admits the twisted boundary condition if the G theory has an outer automorphism of the horizontal subalgebra that induces an automorphism of the H theory. By introducing the notion of the brane identification and the brane selection rule, we show that the twisted boundary states of the G/H theory can be constructed from those of the G and the H theories. We apply our construction to the su(n) diagonal cosets and the su(2)/u(1) parafermion theory to obtain the twisted boundary states of these theories.
The perturbed conformal field theories corresponding to the massive Symmetric Space sine-Gordon soliton theories are identified by calculating the central charge of the unperturbed conformal field theory and the conformal dimension of the perturbation. They are described by an action with a positive-definite kinetic term and a real potential term bounded from below, their equations of motion are non-abelian affine Toda equations and, moreover, they exhibit a mass gap. The unperturbed CFT corresponding to the compact symmetric space G/G_0 is either the WZNW action for G_0 or the gauged WZNW action for a coset of the form G_0/U(1)^p. The quantum integrability of the theories that describe perturbations of a WZNW action, named Split models, is established by showing that they have quantum conserved quantities of spin +3 and -3. Together with the already known results for the other massive theories associated with the non-abelian affine Toda equations, the Homogeneous sine-Gordon theories, this supports the conjecture that all the massive Symmetric Space sine-Gordon theories will be quantum integrable and, hence, will admit a factorizable S-matrix. The general features of the soliton spectrum are discussed, and some explicit soliton solutions for the Split models are constructed. In general, the solitons will carry both topological charges and abelian Noether charges. Moreover, the spectrum is expected to include stable and unstable particles.
130 - John Cardy 2017
We propose using smeared boundary states $e^{-tau H}|cal Brangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and of the entanglement spectrum in massive theories. It gives a simple criterion for choosing which boundary state should correspond to which combination of bulk operators, and leads to a rudimentary phase diagram of the theory in the vicinity of the RG fixed point corresponding to the CFT, as well as rigorous upper bounds on the universal amplitude of the free energy. In the case of the 2d minimal models explicit formulae are available. As a side result we show that the matrix elements of bulk operators between smeared Ishibashi states are simply given by the fusion rules of the CFT.
The classification of rational conformal field theories is reconsidered from the standpoint of boundary conditions. Solving Cardys equation expressing the consistency condition on a cylinder is equivalent to finding integer valued representations of the fusion algebra. A complete solution not only yields the admissible boundary conditions but also gives valuable information on the bulk properties.
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1$ theories in $D=4$ spacetime dimensions, can also be twin. We provide evidence from three different perspectives: (i) a twin S-fold construction, (ii) a double-copy argument and (iii) by identifying candidate twin holographically dual gauged supergravity theories. Furthermore, twin W-supergravity theories then follow by applying the double-copy prescription to exotic super conformal field theories.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا