No Arabic abstract
In this paper we study the N=1 supersymmetric field theories realized on the world-volume of type IIB D3-branes sitting at orientifolds of non-orbifold singularities (conifold and generalizations). Several chiral models belong to this family of theories. These field theories have a T-dual realization in terms of type IIA configurations of relatively rotated NS fivebranes, D4-branes and orientifold six-planes, with a compact $x^6$ direction, along which the D4-branes have finite extent. We compute the spectrum on the D3-branes directly in the type IIB picture and match the resulting field theories with those obtained in the type IIA setup, thus providing a non-trivial check of this T-duality. Since the usual techniques to compute the spectrum of the model and check the cancellation of tadpoles, cannot be applied to the case orientifolds of non-orbifold singularities, we use a different approach, and construct the models by partially blowing-up orientifolds of C^3/(Z_2 x Z_2) and C^3/(Z_2 x Z_3) orbifolds.
The warped deformed conifold background of type IIB theory is dual to the cascading $SU(M(p+1))times SU(Mp)$ gauge theory. We show that this background realizes the (super-)Goldstone mechanism where the U(1) baryon number symmetry is broken by expectation values of baryonic operators. The resulting massless pseudo-scalar and scalar glueballs are identified in the supergravity spectrum. A D-string is then dual to a global string in the gauge theory. Upon compactification, the Goldstone mechanism turns into the Higgs mechanism, and the global strings turn into ANO strings.
We obtain the spectrum of glueball masses for the N=1 non-conformal cascade theory whose supergravity dual was recently constructed by Klebanov and Strassler. The glueball masses are calculated by solving the supergravity equations of motion for the dilaton and the two-form in the deformed conifold background.
It has recently been appreciated that the conifold modulus plays an important role in string-phenomenological set-ups involving warped throats, both by imposing constraints on model building and for obtaining a 10-dimensional picture of SUSY-breaking. In this note, we point out that the stability of the conifold modulus furthermore prevents large super- Planckian axion monodromy field ranges caused by brane-flux decay processes down warped throats. Our findings imply a significant challenge for concrete string theory embeddings of the inflationary flux-unwinding scenario.
We introduce a method for finding flux vacua of type IIB string theory in which the flux superpotential is exponentially small and at the same time one or more complex structure moduli are stabilized exponentially near to conifold points.
We consider two different physical systems for which the basis of the Hilbert space can be parametrized by Young diagrams: free complex fermions and the phase model of strongly correlated bosons. Both systems have natural, well-known deformations parametrized by a parameter Q: the former one is related to the deformed boson-fermion correspondence introduced by N. Jing, while the latter is the so-called Q-boson, arising also in the context of quantum groups. These deformations are equivalent and can be realized in the same way in the algebra of Hall-Littlewood symmetric functions. Without a deformation, these reduce to Schur functions, which can be used to construct a generating function of plane partitions, reproducing a topological string partition function on $C^3$. We show that a deformation of both systems leads then to a deformed generating function, which reproduces topological string partition function of the conifold, with the deformation parameter Q identified with the size of $P^1$. Similarly, a deformation of the fermion one-point function results in the A-brane partition function on the conifold.