No Arabic abstract
We use the boundary state formalism to study, from the closed string point of view, superpositions of branes and anti-branes which are relevant in some non-perturbative string dualities. Treating the tachyon instability of these systems as proposed by A. Sen, we show how to incorporate the effects of the tachyon condensation directly in the boundary state. In this way we manage to show explicitly that the D1 -- anti-D1 pair of Type I is a stable non-BPS D-particle, and compute its mass. We also generalize this construction to describe other non-BPS D-branes of Type I. By requiring the absence of tachyons in the open string spectrum, we find which configurations are stable and compute their tensions. Our classification is in complete agreement with the results recently obtained using the K-theory of space-time.
We review the boundary state description of the non-BPS D-branes in the type I string theory and show that the only stable configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS D-particles and compare them with the interactions of the dual non-BPS particles of the heterotic string finding complete agreement. In this way we provide further dynamical evidence of the heterotic/type I duality.
We review the boundary state description of D-branes in type I string theory and show that the only stable non-BPS configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS D-particles and compare them with the interactions of the dual non-BPS states of the heterotic string, finding complete agreement.
We discuss a set of heterotic and type II string theory compactifications to 1+1 dimensions that are characterized by factorized internal worldsheet CFTs of the form $V_1otimes bar V_2$, where $V_1, V_2$ are self-dual (super) vertex operator algebras. In the cases with spacetime supersymmetry, we show that the BPS states form a module for a Borcherds-Kac-Moody (BKM) (super)algebra, and we prove that for each model the BKM (super)algebra is a symmetry of genus zero BPS string amplitudes. We compute the supersymmetric indices of these models using both Hamiltonian and path integral formalisms. The path integrals are manifestly automorphic forms closely related to the Borcherds-Weyl-Kac denominator. Along the way, we comment on various subtleties inherent to these low-dimensional string compactifications.
We study extremal non-BPS black holes and strings arising in M-theory compactifications on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we compute the black hole mass and black string tension, leading to a conjectural formula for the asymptotic volumes of connected, locally volume-minimizing representatives of non-holomorphic, even-dimensional homology classes in the threefold, without knowledge of an explicit metric. In the case of divisors we find examples where the volume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and leading to stable, non-BPS strings. We also compute the central charges of non-BPS strings in F-theory via a near-horizon $AdS_3$ limit in 6d which, upon compactification on a circle, account for the asymptotic entropy of extremal non-supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal 2-cycles).
We study a matrix version of the purely cubic open string field theory as describing the expansion around the closed string vacuum. Any D-branes in the given closed string background can appear as classical solutions by using the identity projectors. Expansion around this solution gives the correct kinetic term for the open strings on the created D-branes while there are some subtleties in the unwanted degree of freedom.