Do you want to publish a course? Click here

Baryons and Domain Walls in an N = 1 Superconformal Gauge Theory

469   0   0.0 ( 0 )
 Added by Igor Klebanov
 Publication date 1998
  fields
and research's language is English




Ask ChatGPT about the research

Coincident D3-branes placed at a conical singularity are related to string theory on $AdS_5times X_5$, for a suitable five-dimensional Einstein manifold $X_5$. For the example of the conifold, which leads to $X_5=T^{1,1}=(SU(2)times SU(2))/U(1)$, the infrared limit of the theory on $N$ D3-branes was constructed recently. This is ${cal N}=1$ supersymmetric $SU(N)times SU(N)$ gauge theory coupled to four bifundamental chiral superfields and supplemented by a quartic superpotential which becomes marginal in the infrared. In this paper we consider D3-branes wrapped over the 3-cycles of $T^{1,1}$ and identify them with baryon-like chiral operators built out of products of $N$ chiral superfields. The supergravity calculation of the dimensions of such operators agrees with field theory. We also study the D5-brane wrapped over a 2-cycle of $T^{1,1}$, which acts as a domain wall in $AdS_5$. We argue that upon crossing it the gauge group changes to $SU(N)times SU(N+1)$. This suggests a construction of supergravity duals of ${cal N}=1$ supersymmetric $SU(N_1)times SU(N_2)$ gauge theories.



rate research

Read More

We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined via the Witten index of the induced worldvolume theory, which is invariant under the deformation to the Higgs phase. The worldvolume theory is a sigma model with a Grassmanian target space which arises as the coset associated with the global symmetries broken by the wall solution. Imposing a suitable infrared regulator, the result is found to agree with recent work of Acharya and Vafa in which the walls were realized as wrapped D4-branes in IIA string theory.
We study supersymmetric domain walls of four dimensional $SU(N)$ SQCD with $N$ and $N+1$ flavors. In $4d$ we analyze the BPS differential equations numerically. In $3d$ we propose the $mathcal{N}=1$ Chern-Simons-Matter gauge theories living on the walls. Compared with the previously studied regime of $F<N$ flavors, we encounter a couple of novelties: with $N$ flavors, there are solutions/vacua breaking the $U(1)$ baryonic symmetry; with $N+1$ flavors, our $3d$ proposal includes a linear monopole operator in the superpotential.
We study the worldvolume dynamics of BPS domain walls in N=1 SQCD with N_f=N flavors, and exhibit an enhancement of supersymmetry for the reduced moduli space associated with broken flavor symmetries. We provide an explicit construction of the worldvolume superalgebra which corresponds to an N=2 Kahler sigma model in 2+1D deformed by a potential, given by the norm squared of a U(1) Killing vector, resulting from the flavor symmetries broken by unequal quark masses. This framework leads to a worldvolume description of novel two-wall junction configurations, which are 1/4-BPS objects, but nonetheless preserve two supercharges when viewed as kinks on the wall worldvolume.
In the beta-deformed N=4 supersymmetric SU(N) Yang-Mills theory we study the class of operators O_J = Tr(Phi_i^J Phi_k), i eq k and compute their exact anomalous dimensions for N,Jtoinfty. This leads to a prediction for the masses of the corresponding states in the dual string theory sector. We test the exact formula perturbatively up to two loops. The consistency of the perturbative calculation with the exact result indicates that in the planar limit the one--loop condition g^2=hbar{h} for superconformal invariance is indeed sufficient to insure the {em exact} superconformal invariance of the theory. We present a direct proof of this point in perturbation theory. The O_J sector of this theory shares many similarities with the BMN sector of the N=4 theory in the large R--charge limit.
399 - M. Beccaria , M. Billo , M. Frau 2021
We consider the $mathcal{N}=2$ SYM theory with gauge group SU($N$) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-$N$ t Hooft expansion and is dual to a particular orientifold of $AdS_{5}times S^{5}$. We analyze this gauge theory relying on the matrix model provided by localization a la Pestun. Even though this matrix model has very non-trivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the t Hooft coupling $lambda$. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Pade resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk $|lambda|<pi^2$ of the latter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا