The metric-affine gauge theory of gravity provides a broad framework in which gauge theories of gravity can be formulated. In this article we fit metric-affine gravity into the covariant BRST--antifield formalism in order to obtain gauge fixed quantum actions. As an example the gauge fixing of a general two-dimensional model of metric-affine gravity is worked out explicitly. The result is shown to contain the gauge fixed action of the bosonic string in conformal gauge as a special case.
We discuss the BRST quantization of General Relativity (GR) with a cosmological constant in the unimodular gauge. We show how to gauge fix the transverse part of the diffeomorphism and then further to fulfill the unimodular gauge. This process requires the introduction of an additional pair of BRST doublets which decouple from the physical sector together with the other three pairs of BRST doublets for the transverse diffeomorphism. We show that the physical spectrum is the same as GR in the usual covariant gauge fixing. We then suggest to define the quantum theory of Unimodular Gravity (UG) by making Fourier transform of GR in the unimodular gauge with respect to the cosmological constant and slightly generalizing it. This suggests that the quantum theory of UG may describe the same theory as GR but the spacetime volume is fixed. We also discuss problems left in this formulation of UG.
Within the asymptotic safety scenario for gravity various conceptual issues related to the scale dependence of the metric are analyzed. The running effective field equations implied by the effective average action of Quantum Einstein Gravity (QEG) and the resulting families of resolution dependent metrics are discussed. The status of scale dependent vs. scale independent diffeomorphisms is clarified, and the difference between isometries implemented by scale dependent and independent Killing vectors is explained. A concept of scale dependent causality is proposed and illustrated by various simple examples. The possibility of assigning an intrinsic length to objects in a QEG spacetime is also discussed.
We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations for the distortion tensor (torsion and non-metricity) become algebraic, which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini formalism (in which we assume there is no coupling between matter and the connections), but when matter field couples to the connections, the effective Einstein equations include an additional hyper energy-momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a simple form of Galileon scalar field in metric-affine could cause G-inflation.
In this paper we review the Myrzakulov Gravity models (MG-N, with $mathrm{N = I, II, ldots, VIII}$) and derive their respective metric-affine generalizations (MAMG-N), discussing also their particular sub-cases. The field equations of the theories are obtained by regarding the metric tensor and the general affine connection as independent variables. We then focus on the case in which the function characterizing the aforementioned metric-affine models is linear and consider a Friedmann-Lema^{i}tre-Robertson-Walker background to study cosmological aspects and applications.