We present simple diagrammatic rules to write down Euclidean n-point functions at finite temperature directly in terms of 3-dimensional momentum integrals, without ever performing a single Matsubara sum. The rules can be understood as describing the interaction of the external particles with those of the thermal bath.
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for de-confinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing to analyse the Weinberg sum rules, and predict the dimuon spectrum in heavy ion collisions in the region of the rho-meson. Also in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.
An attempt to adapt the study of color flux tubes to the case of finite temperature has been made. The field is measured both through the correlator of two Polyakov loops, one of which connected to a plaquette, and through a connected correlator of Wilson loop and plaquette in the spatial sublattice. Still the profile of the flux tube resembles the transverse field distribution around an isolated vortex in an ordinary superconductor. The temperature dependence of all the parameters characterizing the flux tube is investigated.
The up and down quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector divergences, to five loop order in Perturbative QCD (PQCD), and including leading non-perturbative QCD and higher order quark mass corrections. This FESR is designed to reduce considerably the systematic uncertainties arising from the (unmeasured) hadronic resonance sector, which in this framework contributes less than 3-4% to the quark mass. This is achieved by introducing an integration kernel in the form of a second degree polynomial, restricted to vanish at the peak of the two lowest lying resonances. The driving hadronic contribution is then the pion pole, with parameters well known from experiment. The determination is done in the framework of Contour Improved Perturbation Theory (CIPT), which exhibits a very good convergence, leading to a remarkably stable result in the unusually wide window $s_0 = 1.0 - 4.0 {GeV}^2$, where $s_0$ is the radius of the integration contour in the complex energy (squared) plane. The results are: $m_u(Q= 2 {GeV}) = 2.9 pm 0.2 $ MeV, $m_d(Q= 2 {GeV}) = 5.3 pm 0.4$ MeV, and $(m_u + m_d)/2 = 4.1 pm 0.2$ Mev (at a scale Q=2 GeV).
We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop, dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.
We present new lattice investigations of finite-temperature transitions for SU(3) gauge theory with Nf=8 light flavors. Using nHYP-smeared staggered fermions we are able to explore renormalized couplings $g^2 lesssim 20$ on lattice volumes as large as $48^3 times 24$. Finite-temperature transitions at non-zero fermion mass do not persist in the chiral limit, instead running into a strongly coupled lattice phase as the mass decreases. That is, finite-temperature studies with this lattice action require even larger $N_T > 24$ to directly confirm spontaneous chiral symmetry breaking.