No Arabic abstract
By applying an inverse Landau-Khalatnikov transformation, connecting (resummed) Schwinger-Dyson treatments in non-local and Landau gauges of $QED_3$, we derive the infrared behaviour of the wave-function renormalization in the Landau gauge, and the associated critical exponents in the normal phase of the theory (no mass generation). The result agrees with the one conjectured in earlier treatments. The analysis involves an approximation, namely an expansion of the non-local gauge in powers of momenta in the infrared. This approximation is tested by reproducing the critical number of flavours necessary for dynamical mass generation in the chiral-symmetry-broken phase of $QED_3$.
We show that the gauge-fermion interaction in multiflavour $(2+1)$-dimensional quantum electrodynamics with a finite infrared cut-off is responsible for non-fermi liquid behaviour in the infrared, in the sense of leading to the existence of a non-trivial fixed point at zero momentum, as well as to a significant slowing down of the running of the coupling at intermediate scales as compared with previous analyses on the subject. Both these features constitute deviations from fermi-liquid theory. Our discussion is based on the leading- $1/N$ resummed solution for the wave-function renormalization of the Schwinger-Dyson equations . The present work completes and confirms the expectations of an earlier work by two of the authors (I.J.R.A. and N.E.M.) on the non-trivial infrared structure of the theory.
We derive the Landau-Khalatnikov-Frandkin transformation (LKFT) for the fermion propagator in quantum electrodynamics (QED) described within a brane-world inspired framework where photons are allowed to move in $d_gamma$ space-time (bulk) dimensions, while electrons remain confined to a $d_e$-dimensional brane, with $d_e < d_gamma$, referred to in the literature as reduced quantum electrodynamics, RQED$_{d_gamma,d_e}$. Specializing to the case of graphene, namely, RQED$_{4,3}$ with massless fermions, we derive the nonperturbative form of the fermion propagator starting from its bare counterpart and then compare its weak coupling expansion to known one- and two-loop perturbative results. The agreement of the gauge-dependent terms of order $alpha$ and $alpha^{2}$ is reminiscent from the structure of LKFT in ordinary QED in arbitrary space-time dimensions and provides strong constraints for the multiplicative renormalizability of RQED$_{d_gamma,d_e}$.
We explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau-Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D is used to test claims made for general cases. When renormalized correctly, a simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
We argue that the gauge-fermion interaction in multiflavour quantum electrodynamics in $(2 + 1)$-dimensions is responsible for non-fermi liquid behaviour in the infrared, in the sense of leading to the existence of a non-trivial (quasi) fixed point that lies between the trivial fixed point (at infinite momenta) and the region where dynamical symmetry breaking and mass generation occurs. This quasi-fixed point structure implies slowly varying, rather than fixed, couplings in the intermediate regime of momenta, a situation which resembles that of (four-dimensional) `walking technicolour models of particle physics. The inclusion of wave-function renormalization yields marginal $O(1/N)$-corrections to the `bulk non-fermi liquid behaviour caused by the gauge interaction in the limit of infinite flavour number. Such corrections lead to the appearance of modified critical exponents. In particular, at low temperatures there appear to be logarithmic scaling violations of the linear resistivity of the system of order $O(1/N)$. Connection with the anomalous normal-state properties of certain condensed matter systems relevant for high-temperature superconductivity is briefly discussed. The relevance of the large (flavour) $N$ expansion to the fermi-liquid problem is emphasized. As a partial result of our analysis, we point out the absence of Charge-Density-Wave Instabilities from the effective low-energy theory, as a consequence of gauge invariance.
We develop new tools for isolating CFTs using the numerical bootstrap. A cutting surface algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite programming, this enables bootstrap studies of much larger systems of correlation functions than was previously practical. We apply these methods to correlation functions of charge-0, 1, and 2 scalars in the 3d $O(2)$ model, computing new precise values for scaling dimensions and OPE coefficients in this theory. Our new determinations of scaling dimensions are consistent with and improve upon existing Monte Carlo simulations, sharpening the existing decades-old $8sigma$ discrepancy between theory and experiment.