Quantum tunneling between degenerate ground states through the central barrier of a potential is extended to excited states with the instanton method. This extension is achieved with the help of an LSZ reduction technique as in field theory and may be of importance in the study of macroscopic quantum phenomena in magnetic systems.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Results in the zero-momentum bosonic I=1/2, S=1, T1u symmetry sector of QCD using a correlation matrix of 58 operators are presented. All needed Wick contractions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing. Level identification using probe operators is discussed.
A recent analytic test of the instanton method performed by comparing the exact spectrum of the Lam${acute e}$ potential (derived from representations of a finite dimensional matrix expressed in terms of $su(2)$ generators) with the results of the tight--binding and instanton approximations as well as the standard WKB approximation is commented upon. It is pointed out that in the case of the Lam${acute e}$ potential as well as others the WKB--related method of matched asymptotic expansions yields the exact instanton result as a result of boundary conditions imposed on wave functions which are matched in domains of overlap.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Our first results in the zero-momentum bosonic I=1, S=0, T1u+ symmetry sector of QCD using a correlation matrix of 56 operators are presented. In addition to a dozen spatially-extended meson operators, 44 two-meson operators are used, involving a wide variety of light isovector, isoscalar, and strange meson operators of varying relative momenta. All needed Wick contractions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing. Level identification is discussed.
We construct a family of solutions of the holographic insulator/superconductor phase transitions with the excited states in the AdS soliton background by using both the numerical and analytical methods. The interesting point is that the improved Sturm-Liouville method can not only analytically investigate the properties of the phase transition with the excited states, but also the distributions of the condensed fields in the vicinity of the critical point. We observe that, regardless of the type of the holographic model, the excited state has a higher critical chemical potential than the corresponding ground state, and the difference of the dimensionless critical chemical potential between the consecutive states is around 2.4, which is different from the finding of the metal/superconductor phase transition in the AdS black hole background. Furthermore, near the critical point, we find that the phase transition of the systems is of the second order and a linear relationship exists between the charge density and chemical potential for all the excited states in both s-wave and p-wave insulator/superconductor models.
We employ the numerical and analytical methods to study the effects of the hyperscaling violation on the ground and excited states of holographic superconductors. For both the holographic s-wave and p-wave models with the hyperscaling violation, we observe that the excited state has a lower critical temperature than the corresponding ground state, which is similar to the relativistic case, and the difference of the dimensionless critical chemical potential between the consecutive states decreases as the hyperscaling violation increases. Interestingly, as we amplify the hyperscaling violation in the s-wave model, the critical temperature of the ground state first decreases and then increases, but that of the excited states always decreases. In the p-wave model, regardless of the the ground state or the excited states, the critical temperature always decreases with increasing the hyperscaling violation. In addition, we find that the hyperscaling violation affects the conductivity $sigma$ which has $2n+1$ poles in Im[$sigma$] and $2n$ poles in Re[$sigma$] for the $n$-th excited state, and changes the relation in the gap frequency for the excited states in both s-wave and p-wave models.