Do you want to publish a course? Click here

Spinons as Composite Fermions

66   0   0.0 ( 0 )
 Added by Daniel Cabra
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that gauge invariant composites in the fermionic realization of $SU(N)_1$ conformal field theory explicitly exhibit the holomorphic factorization of the corresponding WZW primaries. In the $SU(2)_1$ case we show that the holomorphic sector realizes the spinon $Y(sl_2)$ algebra, thus allowing the classification of the chiral Fock space in terms of semionic quasi-particle excitations created by the composite fermions.



rate research

Read More

We study a dynamical mechanism that generates a composite vectorlike fermion, formed by the binding of an $N$-tuplet of elementary chiral fermions to an $N$-tuplet of scalars. Deriving the properties of the composite fermion in the large $N$ limit, we show that its mass is much smaller than the compositeness scale when the binding coupling is near a critical value. We compute the contact interactions involving four composite fermions, and find that their coefficients scale as $1/N$. Physics beyond the Standard Model may include composite vectorlike fermions arising from this mechanism.
Hall viscosity, also known as the Lorentz shear modulus, has been proposed as a topological property of a quantum Hall fluid. Using a recent formulation of the composite fermion theory on the torus, we evaluate the Hall viscosities for a large number of fractional quantum Hall states at filling factors of the form $ u=n/(2pnpm 1)$, where $n$ and $p$ are integers, from the explicit wave functions for these states. The calculated Hall viscosities $eta^A$ agree with the expression $eta^A=(hbar/4) {cal S}rho$, where $rho$ is the density and ${cal S}=2ppm n$ is the shift in the spherical geometry. We discuss the role of modular invariance of the wave functions, of the center-of-mass momentum, and also of the lowest-Landau-level projection. Finally, we show that the Hall viscosity for $ u={nover 2pn+1}$ may be derived analytically from the microscopic wave functions, provided that the overall normalization factor satisfies a certain behavior in the thermodynamic limit. This derivation should be applicable to a class of states in the parton construction, which are products of integer quantum Hall states with magnetic fields pointing in the same direction.
The fractional quantum Hall (FQH) effect was discovered in two-dimensional electron systems subject to a large perpendicular magnetic field nearly four decades ago. It helped launch the field of topological phases, and in addition, because of the quenching of the kinetic energy, gave new meaning to the phrase correlated matter. Most FQH phases are gapped like insulators and superconductors; however, a small subset with even denominator fractional fillings nu of the Landau level, typified by nu = 1/2, are found to be gapless, with a Fermi surface akin to metals. We discuss our results, obtained numerically using the infinite Density Matrix Renormalization Group (iDMRG) scheme, on the effect of non-isotropic distortions with discrete N-fold rotational symmetry of the Fermi surface at zero magnetic field on the Fermi surface of the correlated nu = 1/2 state. We find that while the response for N = 2 (elliptical) distortions is significant (and in agreement with experimental observations with no adjustable parameters), it decreases very rapidly as N is increased. Other anomalies, like resilience to breaking the Fermi surface into disjoint pieces, are also found. This highlights the difference between Fermi surfaces formed from the kinetic energy, and those formed of purely potential energy terms in the Hamiltonian.
In 1929 Felix Bloch suggested that the paramagnetic Fermi sea of electrons should make a spontaneous transition to a fully-magnetized state at very low densities, because the exchange energy gained by aligning the spins exceeds the enhancement in the kinetic energy. We report here the observation of an abrupt, interaction-driven transition to full magnetization, highly reminiscent of Bloch ferromagnetism that has eluded experiments for the last ninety years. Our platform is the exotic two-dimensional Fermi sea of composite fermions at half-filling of the lowest Landau level. Via quantitative measurements of the Fermi wavevector, which provides a direct measure of the spin polarization, we observe a sudden transition from a partially-spin-polarized to a fully-spin-polarized ground state as we lower the composite fermions density. Our detailed theoretical calculations provide a semi-quantitative account of this phenomenon.
42 - J.K. Jain , T. Kawamura 1994
We demonstrate the formation of composite fermions in two-dimensional quantum dots under high magnetic fields. The composite fermion interpretation provides a simple way to understand several qualitative and quantitative features of the numerical results obtained earlier in exact diagonalization studies. In particular, the ground states are recognized as compactly filled quasi-Landau levels of composite fermions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا