Do you want to publish a course? Click here

Bender-Dunne Orthogonal Polynomials and Quasi-Exact Solvability

198   0   0.0 ( 0 )
 Added by Zbigniew Walczak
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

The paper is devoted to the further study of the remarkable classes of orthogonal polynomials recently discovered by Bender and Dunne. We show that these polynomials can be generated by solutions of arbitrary quasi - exactly solvable problems of quantum mechanichs both one-dimensional and multi-dimensional. A general and model-independent method for building and studying Bender-Dunne polynomials is proposed. The method enables one to compute the weight functions for the polynomials and shows that they are the orthogonal polynomials in a discrete variable $E_k$ which takes its values in the set of exactly computable energy levels of the corresponding quasi-exactly solvable model. It is also demonstrated that in an important particular case, the Bender-Dunne polynomials exactly coincide with orthogonal polynomials appearing in Lanczos tridiagonalization procedure.



rate research

Read More

It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find a set of polynomial solutions of this quasi-exactly solvable version of the CHEq. These finite solutions encompass previously known polynomial solutions of the Generalized Spheroidal Equation, Razavy Eq., Whittaker-Hill Eq., etc. The analysis is applied to obtain and describe special eigen-functions of the quantum Hamiltonian of two fixed Coulombian centers in two and three dimensions.
79 - Alexander D. Popov 2021
We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued functions on a domain in superambitwistor space ${mathcal L}_{mathbb R}^{5|6}$ of real dimension $(5|6)$. This leads to a procedure for generating solutions of super-Yang-Mills equations on $mathbb R^{3,1}$ via solving a Riemann-Hilbert-type factorization problem on two-spheres in $mathcal L_{mathbb R}^{5|6}$.
As a straightforward generalization and extension of our previous paper, J. Phys. A50 (2017) 215201 we study aspects of the quantum and classical dynamics of a $3$-body system with equal masses, each body with $d$ degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. It corresponds to a three-dimensional quantum particle moving in a curved space with special $d$-dimension-independent metric in a certain $d$-dependent singular potential, while at $d=1$ it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is $d$-independent, it has a hidden $sl(4,R)$ Lie (Poisson) algebra structure, alternatively, the hidden algebra $h^{(3)}$ typical for the $H_3$ Calogero model as in the $d=3$ case. We find an exactly-solvable three-body $S^3$-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly-solvable three-body sextic polynomial type potential with singular terms. For both models an extra first order integral exists. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to $d>1$ leads to two primitive quasi-exactly-solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.
Due to its great importance for applications, we generalize and extend the approach of our previous papers to study aspects of the quantum and classical dynamics of a $4$-body system with equal masses in {it $d$}-dimensional space with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. The ground state (and some other states) in the quantum case and some trajectories in the classical case are of this type. We construct the quantum Hamiltonian for which these states are eigenstates. For $d geq 3$, this describes a six-dimensional quantum particle moving in a curved space with special $d$-independent metric in a certain $d$-dependent singular potential, while for $d=1$ it corresponds to a three-dimensional particle and coincides with the $A_3$ (4-body) rational Calogero model; the case $d=2$ is exceptional and is discussed separately. The kinetic energy of the system has a hidden $sl(7,{bf R})$ Lie (Poisson) algebra structure, but for the special case $d=1$ it becomes degenerate with hidden algebra $sl(4,R)$. We find an exactly-solvable four-body $S_4$-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly-solvable four-body sextic polynomial type potential with singular terms. Naturally, the tetrahedron whose vertices correspond to the positions of the particles provides pure geometrical variables, volume variables, that lead to exactly solvable models. Their generalization to the $n$-body system as well as the case of non-equal masses is briefly discussed.
167 - Christophe Goeller 2020
This thesis is dedicated to the study of quasi-local boundary in quantum gravity in the 3D space-time case. This research takes root in the holographic principle, which conjectures that the geometry and the dynamic of a space-time region can be entirely described by a theory living on the boundary of this given region. The most studied case of this principle is the AdS/CFT correspondence, where the quantum fluctuations of an asymptotically AdS space are described by a conformal field theory living at spatial infinity, invariant under the Virasoro group. The philosophy applied in this thesis differs from the AdS/CFT case. I focus on the case of quasi-local holography, i.e. for a bounded region of space-time with a boundary at a finite distance. The objective is to clarify the bulk-boundary relation in quantum gravity described by the Ponzano-Regge model, defining a model for 3D gravity via a discrete path integral. I present the first perturbative and exact computations of the Ponzano-Regge amplitude on a torus with a 2D boundary state. After the presentation of the general framework for the 3D amplitude in terms of the 2D boundary state, I consider the 2D torus case, with application in the study of the thermodynamics of the BTZ black hole. First, the 2D boundary is described by a coherent spin network state in the semi-classical regime. The stationary phase approximation allows to recover in the asymptotic limit the usual amplitude for 3D quantum gravity as the character of the symmetry of asymptotically flat gravity, the BMS group. Then I introduce a new type of coherent boundary state, which allows an exact evaluation of the amplitude for 3D quantum gravity. I obtain a complex regularization of the BMS character. The possibility of this exact computation suggests the existence of a (quasi)-integrable structure, linked to the symmetries of 3D quantum gravity with 2D finite boundary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا