No Arabic abstract
We reformulate the Thirring model in $D$ $(2 le D < 4)$ dimensions as a gauge theory by introducing $U(1)$ hidden local symmetry (HLS) and study the dynamical mass generation of the fermion through the Schwinger-Dyson (SD) equation. By virtue of such a gauge symmetry we can greatly simplify the analysis of the SD equation by taking the most appropriate gauge (``nonlocal gauge) for the HLS. In the case of even-number of (2-component) fermions, we find the dynamical fermion mass generation as the second order phase transition at certain fermion number, which breaks the chiral symmetry but preserves the parity in (2+1) dimensions ($D=3$). In the infinite four-fermion coupling (massless gauge boson) limit in (2+1) dimensions, the result coincides with that of the (2+1)-dimensional QED, with the critical number of the 4-component fermion being $N_{rm cr} = frac{128}{3pi^{2}}$. As to the case of odd-number (2-component) fermion in (2+1) dimensions, the regularization ambiguity on the induced Chern-Simons term may be resolved by specifying the regularization so as to preserve the HLS. Our method also applies to the (1+1) dimensions, the result being consistent with the exact solution. The bosonization mechanism in (1+1) dimensional Thirring model is also reproduced in the context of dual-transformed theory for the HLS.
We propose a novel gauge-invariant regularization for the perturbative chiral gauge theory.Our method consists of the two ingredients: use of the domain-wall fermion to describe a chiral fermion with Pauli-Villars regulators and application of the di- mensional regularization only to the gauge field. This regularization is implemented in the Lagrangian level, unlike other gauge-invariant regularizations (eg. the covariant regularizations). We show that the Abelian (fermion number) anomaly is reproduced correctly in this formulation. We also show that once we add the counter terms to the full theory, then the renormalization in the chiral gauge theory is automatically achieved.
The content of two additional Ward identities exhibited by the $U(1)$ Higgs model is exploited. These novel Ward identities can be derived only when a pair of local composite operators providing a gauge invariant setup for the Higgs particle and the massive vector boson is introduced in the theory from the beginning. Among the results obtained from the above mentioned Ward identities, we underline a new exact relationship between the stationary condition for the vacuum energy, the vanishing of the tadpoles and the vacuum expectation value of the gauge invariant scalar operator. We also present a characterization of the two-point correlation function of the composite operator corresponding to the vector boson in terms of the two-point function of the elementary gauge fields. Finally, a discussion on the connection between the cartesian and the polar parametrization of the complex scalar field is presented in the light of the Equivalence Theorem. The latter can in the current case be understood in the language of a constrained cohomology, which also allows to rewrite the action in terms of the aforementioned gauge invariant operators. We also comment on the diminished role of the global $U(1)$ symmetry and its breaking.
The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.
We apply a semi-classical method to compute the conformal field theory (CFT) data for the U(N)xU(N) non-abelian Higgs theory in four minus epsilon dimensions at its complex fixed point. The theory features more than one coupling and walking dynamics. Given our charge configuration, we identify a family of corresponding operators and compute their scaling dimensions which remarkably agree with available results from conventional perturbation theory validating the use of the state-operator correspondence for a complex CFT.
We argue that different formulations of hydrodynamics are related to uncertainties in the definitions of local thermodynamic and hydrodynamic variables. We show that this ambiguity can be resolved by viewing different formulations of hydrodynamics as particular gauge choices which lead to the same physical behavior of the system. Using the example of bulk viscosity, we show that Bemfica-Disconzi-Noronha-Kovtun (BDNK) and Israel-Stewart hydrodynamics are particular gauge choices of this type, related by a well-defined transformation of thermodynamic and hydrodynamic variables. We argue that this gauge ambiguity is necessary to ascertain the causality of stochastic hydrodynamic evolution and conjecture that it could explain the applicability of hydrodynamics outside its expected regime of validity since far from equilibrium and close to equilibrium may be related through transformations of this type.