No Arabic abstract
In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as a coupled quintessence. Based on this consideration, we investigate the dilaton coupled quintessence(DCQ) model in $omega-omega$ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor $a$). We find the scalar field equation of motion in $omega-omega$ plane, and show mathematically the property of attractor solutions which correspond to $omega_sigmasim-1$, $Omega_sigma=1$. Finally, we find that our model is a tracking one which belongs to freezing type model classified in $omega-omega$ plane.
In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the $omega-omega$ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor $a$). We find the scalar field equation of motion in $omega-omega$ plane, and show mathematically the property of attractor solutions which correspond to $omega_phisim-1$, $Omega_phi=1$, which avoid the Big rip problem and meets the current observations well.
Based on dilatonic dark energy model, we consider two cases: dilaton field with positive kinetic energy(coupled quintessence) and with negative kinetic energy(phantom). In the two cases, we investigate the existence of attractor solutions which correspond to an equation of state parameter $omega=-1$ and a cosmic density parameter $Omega_sigma=1$. We find that the coupled term between matter and dilaton cant affect the existence of attractor solutions. In the Mexican hat potential, the attractor behaviors, the evolution of state parameter $omega$ and cosmic density parameter $Omega$, are shown mathematically. Finally, we show the effect of coupling term on the evolution of $X(frac{sigma}{sigma_0})$ and $Y(frac{dot{sigma}}{sigma^2_0})$ with respect to $N(lna)$ numerically.
In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as coupled Quintessence, which is called DCQ model by us. Parametrization of the dark energy model is a good method by which we can construct the scalar potential directly from the effective equation of state function $omega_sigma(z)$ describing the properties of the dark energy. Applying this method to the DCQ model, we consider four parametrizations of $omega(z)$ and investigate the features of the constructed DCQ potentials, which possess two different evolutive behaviors called O mode and E mode. Lastly, we comprise the results of the constructed DCQ model with those of quintessence model numerically.
An omega-meson extension of the Skyrme model - without the Skyrme term but including the pion mass - first considered by Adkins and Nappi is studied in detail for baryon numbers 1 to 8. The static problem is reformulated as a constrained energy minimisation problem within a natural geometric framework and studied analytically on compact domains, and numerically on Euclidean space. Using a constrained second-order Newton flow algorithm, classical energy minimisers are constructed for various values of the omega-pion coupling. At high coupling, these Skyrmion solutions are qualitatively similar to the Skyrmions of the standard Skyrme model with massless pions. At sufficiently low coupling, they show similarities with those in the lightly bound Skyrme model: the Skyrmions of low baryon number dissociate into lightly bound clusters of distinct 1-Skyrmions, and the classical binding energies for baryon numbers 2 through 8 have realistic values.
We describe searches for B meson decays to the charmless vector-vector final states omega omega and omega phi with 471 x 10^6 B Bbar pairs produced in e+ e- annihilation at sqrt(s) = 10.58 GeV using the BABAR detector at the PEP-II collider at the SLAC National Accelerator Laboratory. We measure the branching fraction B(B0 --> omega omega) = (1.2 +- 0.3 +0.3-0.2) x 10^-6, where the first uncertainty is statistical and the second is systematic, corresponding to a significance of 4.4 standard deviations. We also determine the upper limit B(B0 --> omega phi) < 0.7 x 10^-6 at 90% confidence level. These measurements provide the first evidence for the decay B0 --> omega omega, and an improvement of the upper limit for the decay B0 --> omega phi.