No Arabic abstract
A classical upper bound for quantum entropy is identified and illustrated, $0leq S_q leq ln (e sigma^2 / 2hbar)$, involving the variance $sigma^2$ in phase space of the classical limit distribution of a given system. A fortiori, this further bounds the corresponding information-theoretical generalizations of the quantum entropy proposed by Renyi.
We extend the perturbative classical double copy to the analysis of bound systems. We first obtain the leading order perturbative gluon radiation field sourced by a system of interacting color charges in arbitrary time dependent orbits, and test its validity by taking relativistic bremsstrahlung and non-relativistic bound state limits. By generalizing the color to kinematic replacement rules recently used in the context of classical bremsstrahlung, we map the gluon emission amplitude to the radiation fields of dilaton gravity sourced by interacting particles in generic (self-consistent) orbits. As an application, we reproduce the leading post-Newtonian radiation fields and energy flux for point masses in non-relativistic orbits from the double copy of gauge theory.
Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy Cone (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI.
We study the perturbative stability of four settings that arise in String Theory, when dilaton potentials accompany the breaking of Supersymmetry, in the USp(32) and U(32) orientifold models, and also in the heterotic SO(16)xSO(16) model. The first two settings are a family of AdS3xS7 orientifold vacua and a family of AdS7xS3 heterotic vacua, supported by form fluxes, with small world-sheet and string-loop corrections within wide ranges of parameters. In both cases we find some unstable scalar perturbations, as a result of mixings induced by fluxes, confirming for the first class of vacua a previous result. However, in the second class they only affect the l=1 modes, so that a Z2 projection induced by an overall internal parity suffices to eliminate them, leading to perturbative stability. Moreover, the constant dilaton profiles of these vacua allow one to extend the analysis to generic potentials, thus exploring the possible effects of higher-order corrections, and we exhibit wide nearby regions of perturbative stability. The solutions in the third setting have nine-dimensional Poincare symmetry. They include regions with large world-sheet or string-loop corrections, but we show that these vacua have no perturbative instabilities. Finally, the last setting concerns cosmological solutions in ten dimensions where the climbing phenomenon takes place: they have bounded string-loop corrections but large world-sheet ones close to the initial singularity. We find that perturbations generally decay, but homogeneous tensor modes exhibit an interesting logarithmic growth that signals a breakdown of isotropy. If the Universe then proceeds to lower dimensions, milder potentials from other branes force all perturbations to remain bounded.
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of a pair of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field $h_{mu u}(x)$ and position $x_i^mu(tau_i)$ of each black hole on equal footing. Using these both the next-order classical gravitational radiation $langle h^{mu u}(k)rangle$ (previously unknown) and deflection $Delta p_i^mu$ from a binary black hole scattering event are obtained. The latter can also be obtained from the eikonal phase of a $2to2$ scalar S-matrix, which we show to correspond to the free energy of the WQFT.