Do you want to publish a course? Click here

Higher-order corrections to mass-charge relation of extremal black holes

345   0   0.0 ( 0 )
 Added by Megha Padi
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the hypothesis that the higher-derivative corrections always make extremal non-supersymmetric black holes lighter than the classical bound and self-repulsive. This hypothesis was recently formulated in the context of the so-called swampland program. One of our examples involves an extremal heterotic black hole in four dimensions. We also calculate the effect of general four-derivative terms in Maxwell-Einstein theories in D dimensions. The results are consistent with the conjecture.



rate research

Read More

Using the symmetry of the near-horizon geometry and applying quantum field theory of a complex scalar field, we study the spontaneous pair production of charged scalars from near-extremal rotating, electrically and/or magnetically charged black holes. Analytical expressions for pair production, vacuum persistence and absorption cross section are found, and the spectral distribution is given a thermal interpretation. The pair production in near-extremal black holes has a factorization into the Schwinger effect in AdS and Schwinger effect in Rindler space, measuring the deviational from extremality. The associated holographical correspondence is confirmed at the 2-point function level by comparing the absorption cross section ratio as well as the pair production rate both from the gravity and the conformal field theories. The production of monopoles is discussed.
The Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black hole is an influential solution of the low energy heterotic string theory. As it is well known, it presents a singular extremal limit. We construct a regular extension of the GMGHS extremal black hole in a model with $mathcal{O}(alpha)$ corrections in the action, by solving the fully non-linear equations of motion. The de-singularization is supported by the $mathcal{O}(alpha)$-terms. The regularised extremal GMGHS BHs are asymptotically flat, possess a regular (non-zero size) horizon of spherical topology, with an $AdS_2times S^2$ near horizon geometry, and their entropy is proportional to the electric charge. The near horizon solution is obtained analytically and some illustrative bulk solutions are constructed numerically.
We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that the correction to the standard Bekenstein-Hawking entropy depends logarithmically on the area of the horizon. Furthermore, we apply this analysis to the Schwarzschild and Schwarzschild-AdS black holes and discuss our results.
We reviewed the field redefinition approach of Seeley-DeWitt expansion for the determination of Seeley-DeWitt coefficients from arXiv:1505.01156. We apply this approach to compute the first three Seeley-DeWitt coefficients for say{non-minimal} $mathcal{N}=1$ Einstein-Maxwell supergravity in four dimensions. Finally, we use the third coefficient for the computation of the logarithmic corrections to the Bekenstein-Hawking entropy of non-extremal black holes following arXiv:1205.0971. We determine the logarithmic corrections for non-extremal Kerr-Newman, Kerr, Reissner-Nordstr{o}m and Schwarzschild black holes in say{non-minimal} $mathcal{N}=1$, $d=4$ Einstein-Maxwell supergravity.
152 - A. Ulacia Rey 2009
We use the entropy function formalism introduced by A. Sen to obtain the entropy of $AdS_{2}times S^{d-2}$ extremal and static black holes in four and five dimensions, with higher derivative terms of a general type. Starting from a generalized Einstein--Maxwell action with nonzero cosmological constant, we examine all possible scalar invariants that can be formed from the complete set of Riemann invariants (up to order 10 in derivatives). The resulting entropies show the deviation from the well known Bekenstein--Hawking area law $S=A/4G$ for Einsteins gravity up to second order derivatives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا