Do you want to publish a course? Click here

Particle Creation by a Moving Boundary with Robin Boundary Condition

59   0   0.0 ( 0 )
 Added by Bruno Mintz
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position.



rate research

Read More

We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associated with the inverse scattering method. We find that an antikink may be reflected into various combinations of an antikink, a kink, and one or more breathers, depending on the values of the initial antikink velocity and a parameter associated with the boundary condition. In addition we observe regions with an intricate resonance structure arising from the creation of an intermediate breather whose recollision with the boundary is highly dependent on the breather phase.
63 - Ariel Arza 2017
We study a Light Shinning Through the wall type setup with microwave cavities, where the regeneration cavity has a moving boundary condition oscillating harmonically. We find a parametric resonance that could enhance the probability conversion between Weakly Interacting Slim Particles and photons by several orders of magnitude.
The worldline formalism has been widely used to compute physical quantities in quantum field theory. However, applications of this formalism to quantum fields in the presence of boundaries have been studied only recently. In this article we show how to compute in the worldline approach the heat kernel expansion for a scalar field with boundary conditions of Robin type. In order to describe how this mechanism works, we compute the contributions due to the boundary conditions to the coefficients A_1, A_{3/2} and A_2 of the heat kernel expansion of a scalar field on the positive real line.
54 - M. Billo , B. Craps , F. Roose 2000
Boundary states for D-branes at orbifold fixed points are constructed in close analogy with Cardys derivation of consistent boundary states in RCFT. Comments are made on the interpretation of the various coefficients in the explicit expressions, and the relation between fractional branes and wrapped branes is investigated for $mathbb{C}^2/Gamma$ orbifolds. The boundary states are generalised to theories with discrete torsion and a new check is performed on the relation between discrete torsion phases and projective representations.
We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock space, and the IBC relates (essentially) the values of the wave function at any two configurations that differ only by the creation of a particle. Here we prove, for a model of particle creation at one or more point sources using the Laplace operator as the free Hamiltonian, that a Hamiltonian can indeed be rigorously defined in this way without the need for any ultraviolet regularization, and that it is self-adjoint. We prove further that introducing an ultraviolet cut-off (thus smearing out particles over a positive radius) and applying a certain known renormalization procedure (taking the limit of removing the cut-off while subtracting a constant that tends to infinity) yields, up to addition of a finite constant, the Hamiltonian defined by the IBC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا