Do you want to publish a course? Click here

Renormalization of the Non-Linear Sigma Model in Four Dimensions. A two-loop example

89   0   0.0 ( 0 )
 Added by Andrea Quadri
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The renormalization procedure of the non-linear SU(2) sigma model in D=4 proposed in hep-th/0504023 and hep-th/0506220 is here tested in a truly non-trivial case where the non-linearity of the functional equation is crucial. The simplest example, where the non-linear term contributes, is given by the two-loop amplitude involving the insertion of two phi_0 (the constraint of the non-linear sigma model) and two flat connections. In this case we verify the validity of the renormalization procedure: the recursive subtraction of the pole parts at D=4 yields amplitudes that satisfy the defining functional equation. As a by-product we give a formal proof that in D dimensions (without counterterms) the Feynman rules provide a perturbative symmetric solution.



rate research

Read More

The formulation of the non-linear sigma model in terms of flat connection allows the construction of a perturbative solution of a local functional equation encoding the underlying gauge symmetry. In this paper we discuss some properties of the solution at the one-loop level in D=4. We prove the validity of a weak power-counting theorem in the following form: although the number of divergent amplitudes is infinite only a finite number of divergent amplitudes have to be renormalized. The proof uses the linearized functional equation of which we provide the general solution in terms of local functionals. The counteterms are given in terms of linear combinations of these invariants and the coefficients are fixed by a finite number of divergent amplitudes. The latter contain only insertions of the composite operators $phi_0$ (the constraint of the non-linear sigma model) and $F_mu$ (the flat connection). These amplitudes are at the top of a hierarchy implicit in the functional equation. As an example we derive the counterterms for the four-point amplitudes.
We renormalize the SU(N) Gross-Neveu model in the modified minimal subtraction (MSbar) scheme at four loops and determine the beta-function at this order. The theory ceases to be multiplicatively renormalizable when dimensionally regularized due to the generation of evanescent 4-fermi operators. The first of these appears at three loops and we correctly take their effect into account in deriving the renormalization group functions. We use the results to provide estimates of critical exponents relevant to phase transitions in graphene.
We describe the kink solitary waves of a massive non-linear sigma model with an ${mathbb S}^2$ sphere as the target manifold. Our solutions form a moduli space of non-relativistic solitary waves in the long wavelength limit of ferromagnetic linear spin chains.
205 - Gang Chen , Yi-Jian Du 2013
In this paper, we investigate tree-level scattering amplitude relations in $U(N)$ non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24] both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell $U(1)$ identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy $U(1)$-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total $2m$-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.
We discuss some general aspects of renormalization group flows in four dimensions. Every such flow can be reinterpreted in terms of a spontaneously broken conformal symmetry. We analyze in detail the consequences of trace anomalies for the effective action of the Nambu-Goldstone boson of broken conformal symmetry. While the c-anomaly is algebraically trivial, the a-anomaly is non-Abelian, and leads to a positive-definite universal contribution to the S-matrix of 2->2 dilaton scattering. Unitarity of the S-matrix results in a monotonically decreasing function that interpolates between the Euler anomalies in the ultraviolet and the infrared, thereby establishing the a-theorem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا