We describe a class of integrable models of 1+1 and 1-dimensional dilaton gravity coupled to scalar fields. The models can be derived from high dimensional supergravity theories by dimensional reductions. The equations of motion of these models reduce to systems of the Liouville equations endowed with energy and momentum constraints. We construct the general solution of the 1+1 dimensional problem in terms of chiral moduli fields and establish its simple reduction to static black holes (dimension 0+1), and cosmological models (dimension 1+0). We also discuss some general problems of dimensional reduction and relations between static and cosmological solutions.