Do you want to publish a course? Click here

Dark Matter and Dark Energy from a single scalar field

51   0   0.0 ( 0 )
 Added by Roberto Mainini
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The strong CP problem was solved by Peccei & Quinn by introducing axions, which are a viable candidate for DM. Here the PQ approach is modified so to yield also Dark Energy (DE), which arises in fair proportions, without tuning any extra parameter. DM and DE arise from a single scalar field and, in the present ecpoch, are weakly coupled. Fluctuations have a fair evolution. The model is also fitted to WMAP release, using a MCMC technique, and performs as well as LCDM, coupled or uncoupled Dynamical DE. Best-fit cosmological parameters for different models are mostly within 2-$sigma$ level. The main peculiarity of the model is to favor high values of the Hubble parameter.



rate research

Read More

The dual axion model (DAM), yielding bot DM and DE form a PQ-like scalar field solving the strong CP problem, is known to allow a fair fit of CMB data. Recently, however, it was shown that its transfer function exhibits significant anomalies, causing difficulties to fit deep galaxy sample data. Here we show how DAM can be modified to agree with the latter data set. The modification follows the pattern suggested to reconcile any PQ-like approach with gravity. Modified DAM allows precise predictions which can be testable against future CMB and/or deep sample data.
169 - Mingzhe Li , Taotao Qiu , Yifu Cai 2011
In this paper we revisit the dynamical dark energy model building based on single scalar field involving higher derivative terms. By imposing a degenerate condition on the higher derivatives in curved spacetime, one can select the models which are free from the ghost mode and the equation of state is able to cross the cosmological constant boundary smoothly, dynamically violate the null energy condition. Generally the Lagrangian of this type of dark energy models depends on the second derivatives linearly. It behaves like an imperfect fluid, thus its cosmological perturbation theory needs to be generalized. We also study such a model with explicit form of degenerate Lagrangian and show that its equation of state may cross -1 without any instability.
107 - Tommi Tenkanen 2019
Dark matter (DM) may have its origin in a pre-Big Bang epoch, the cosmic inflation. Here, we consider for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an equilibrium between its classical and quantum dynamics in a characteristic time scale during inflation and sources the DM density. The study gives the abundance and perturbation spectrum of any DM component sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure formation, allowing one to test models where DM interacts with matter only gravitationally.
Here we generalize ideas of unified Dark Matter Dark Energy in the context of Two Measure Theories and of Dynamical space time Theories. In Two Measure Theories one uses metric independent volume elements and this allows to construct unified Dark Matter Dark Energy, where the cosmological constant appears as an integration constant associated to the equation of motion of the measure fields. The Dynamical space time Theories generalize the Two Measure Theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: I - by demanding that this vector field be the gradient of a scalar, II - by considering the dynamical space field appearing in another part of the action. Then the Dynamical space time Theory becomes a theory of Diffusive Unified Dark Energy and Dark Matter. These generalizations produce non conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified Dark Energy and Dark Matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the $Lambda$CDM is a fixed point of these theories at large times. Also a preliminary argument about the good behavior of the theory at the quantum level is proposed for both theories.
416 - Sang Pyo Kim , Seoktae Koh 2008
We study the quantum remnant of a scalar field protected by the uncertainty principle. The quantum remnant that survived the later stage of evolution of the universe may provide dark energy and dark matter depending on the potential. Though the quantum remnant shares some useful property of complex scalar field (spintessence) dark energy model, % However although it avoids the formation of Q-ball, quantum fluctuations are still unstable to the linear perturbations for $V sim phi^q$ with $q<1$ as in the spintessence model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا