Lagrangians for several new off-shell 4D, N = 1 supersymmetric descriptions of massive superspin-1 and superspin-3/2 multiplets are described. Taken together with the models previously constructed, there are now four off-shell formulations for the massive gravitino multiplet (superspin-1) and six off-shell formulations for the massive graviton multiplet (superspin-3/2). Duality transformations are derived which relate some of these dynamical systems.
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative features both with 3d bosonization and with 4d Seiberg duality. We provide a few consistency checks of the proposal, mapping the structure of vacua and performing perturbative computations in the $varepsilon$-expansion.
We consider three-dimensional sQED with 2 flavors and minimal supersymmetry. We discuss various models which are dual to Gross-Neveu-Yukawa theories. The $U(2)$ ultraviolet global symmetry is often enhanced in the infrared, for instance to $O(4)$ or $SU(3)$. This is analogous to the conjectured behaviour of non-supersymmetric QED with 2 flavors. A perturbative analysis of the Gross-Neveu-Yukawa models in the $D = 4 - varepsilon$ expansion shows that the $U(2)$ preserving superpotential deformations of the sQED (modulo tuning mass terms to zero) are irrelevant, so the fixed points with enhanced symmetry are stable. We also construct an example of $mathcal{N} = 2$ sQED with 4 flavors that exhibits enhanced $SO(6)$ symmetry.
We study gauge theories with N=1 supersymmetry in 2+1 dimensions. We start by calculating the 1-loop effective superpotential for matter in an arbitrary representation. We then restrict ourselves to gauge theories with fundamental matter. Using the 1-loop superpotential, we find a universal form for the phase diagrams of many such gauge theories, which is proven to persist to all orders in perturbation theory using a symmetry argument. This allows us to conjecture new dualities for N=1 gauge theories with fundamental matter. We also show that these dualities are related to results in N=2 supersymmetric gauge theories, which provides further evidence for them.
We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of $n_c$-cis and $n_t$-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these chemical enantiomer numbers are found to be $n_c$ = $n_t$ = 1 and $n_c$ = 1, $n_t$ = 2, respectively.
We study weak coupling perturbative series in 4d N=2 and 5d N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in zero instanton sector are Borel summable for various observables. Our result for 4d $mathcal{N}=2$ case supports an expectation from a recent proposal on a semiclassical realization of infrared renormalons in QCD-like theories, where the semiclassical solution does not exist in N=2 theories and the perturbative series are unambiguous, namely Borel summable. We also prove that the perturbative series in arbitrary number of instanton sector are Borel summable for a wide class of theories. It turns out that exact results can be obtained by summing over the Borel resummations in each number of instanton sector.