No Arabic abstract
The dynamics of higher-spin fields in braneworlds is discussed. In particular, we study fermionic and bosonic higher-spin fields in AdS_5 and their localization on branes. We find that four-dimensional zero modes exist only for spin-one fields, if there are no couplings to the boundaries. If boundary couplings are allowed, as in the case of the bulk graviton, all bosons acquire a zero mode irrespective of their spin. We show that there are boundary conditions for fermions, which generate chiral zero modes in the four-dimensional spectrum. We also propose a gauge invariant on-shell action with cubic interactions by adding non-minimal couplings, which depend on the Weyl tensor. In addition, consistent couplings between higher-spin fields and matter on the brane are presented. Finally, in the AdS/CFT correspondence, where bulk 5D theories on AdS are related to 4D CFTs, we explicitly discuss the holographic picture of higher-spin theories in AdS_5 with and without boundaries.
Cylindrical braneworlds have been used in the literature as a convenient way to resolve co-dimension-two branes. They are prevented from collapsing by a massless worldvolume field with non-trivial winding, but here we discuss another way of preventing collapse, which is to rotate the brane. We use a simple microscopic field theory model of a domain wall with a condensate for which rotation is a necessity, not just a nice added extra. This is due to a splitting instability, whereby the effective potential trapping the condensate is not strong enough to hold it on the defect in the presence of winding without charge. We use analytic defect solutions in the field theory (kinky vortons) to construct a thin-wall braneworld model by including gravitational dynamics, and we allow for the rotation required by the microscopic theory. We then discuss the impact rotation has on the bulk and brane geometry, thereby providing an anchor for further cosmological investigations. Our setup naturally leads to worldvolume fields living at slightly different radii, and we speculate on the consequences of this in regard to the fermion mass-hierarchy.
We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary. For both these cases the contribution in the vacuum expectation value (VEV) of the energy-momentum tensor is separated explicitly and its behavior in various asymptotic regions of the parameters is studied. It is shown that the influence of the gravitational field on the local properties of the quantum vacuum is essential at distance from the brane larger than the AdS curvature radius. In the geometry with a brane parallel to the AdS boundary the VEV of the energy-momentum tensor is considered for scalar field with the Robin boundary condition, for Dirac field with the bag boundary condition and for the electromagnetic field. In the latter case two types of boundary conditions are discussed. The first one is a generalization of the perfect conductor boundary condition and the second one corresponds to the confining boundary condition used in QCD for gluons. For the geometry of a brane intersecting the AdS boundary, the case of a scalar field is considered. The corresponding energy-momentum tensor, apart from the diagonal components, has nonzero off-diagonal component. As a consequence of the latter, in addition to the normal component, the Casimir force acquires a component parallel to the brane.
We consider five-dimensional gravity with a Gauss-Bonnet term in the bulk and an induced gravity term on a 2-brane of codimension-2. We show that this system admits BTZ-like black holes on the 2-brane which are extended into the bulk with regular horizons.
We consider four-dimensional de Sitter, flat and anti de Sitter branes embedded in a six-dimensional bulk spacetime whose dynamics is dictated by Lovelock theory. We find, applying a generalised version of Birkhoffs theorem, that all possible maximally symmetric braneworld solutions are embedded in Wick-rotated black hole spacetimes of Lovelock theory. These are warped solitonic spaces, where the horizons of the black hole geometries correspond to the possible positions of codimension-2 branes. The horizon temperature is related via conical singularities to the tension or vacuum energy of the branes. We classify the braneworld solutions for certain combinations of bulk parameters, according to their induced curvature, their vacuum energy and their effective compactness in the extra dimensions. The bulk Lovelock theory gives an induced gravity term on the brane, which, we argue, generates four-dimensional gravity up to some distance scale. As a result, some simple solutions, such as the Lovelock corrected Schwarzschild black hole in six dimensions, are shown to give rise to self-accelerating braneworlds. We also find that several other solutions have self-tuning properties. Finally, we present regular gravitational instantons of Lovelock gravity and comment on their significance.
We analyze Bosonic, Heterotic, and Type II string theories compactified on a generic torus having constant moduli. By computing the hamiltonian giving the interaction between massive string excitations and $U(1)$ gauge fields arising from the graviton and Kalb-Ramond field upon compactification, we derive a general formula for such couplings that turns out to be universal in all these theories. We also confirm our result by explicitly evaluating the relevant string three-point amplitudes. From this expression, we determine the gyromagnetic ratio $g$ of massive string states coupled to both gauge-fields. For a generic mixed symmetry state, there is one gyromagnetic coupling associated with each row of the corresponding Young Tableau diagram. For all the states having zero Kaluza Klein or Winding charges, the value of $g$ turns out to be $1$. We also explicitly consider totally symmetric and mixed symmetry states (having two rows in the Young diagram) associated with the first Regge-trajectory and obtain their corresponding $g$ value.