Do you want to publish a course? Click here

Supersymmetric Standard Model Spectra from RCFT orientifolds

53   0   0.0 ( 0 )
 Added by Tim Dijkstra
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We present supersymmetric, tadpole-free d=4,N=1 orientifold vacua with a three family chiral fermion spectrum that is identical to that of the Standard Model. Starting with all simple current orientifolds of all Gepner models we perform a systematic search for such spectra. We consider several variations of the standard four-stack intersection brane realization of the standard model, with all quarks and leptons realized as bifundamentals and perturbatively exact baryon and lepton number symmetries, and with a U(1)_Y vector boson that does not acquire a mass from Green-Schwarz terms. The number of supersymmetric Higgs pairs H_1 + H_2 is left free. In order to cancel all tadpoles, we allow a hidden gauge group, which must bechirally decoupled from the standard model. We also allow for non-chiral mirror-pairs of quarks and leptons, non-chiral exotics and (possibly chiral) hidden, standard model singlet matter, as well as a massless B-L vector boson. All of these less desirable features are absent in some cases, although not simultaneously. In particular, we found cases with massless Chan-Paton gauge bosons generating nothing more than SU(3) x SU(2) x U(1). We obtain almost 180000 rationally distinct solutions (not counting hidden sector degrees of freedom), and present distributions of various quantities. We analyse the tree level gauge couplings, and find a large range of values, remarkably centered around the unification point.



rate research

Read More

We construct d=4,N=1 orientifolds of Gepner models with just the chiral spectrum of the standard model. We consider all simple current modular invariants of c=9 tensor products of N=2 minimal models. For some very specific tensor combinations, and very specific modular invariants and orientifold projections, we find a large number of such spectra. We allow for standard model singlet (dark) matter and non-chiral exotics. The Chan-Paton gauge group is either U(3) x Sp(2) x U(1) x U(1) or U(3) x U(2) x U(1) x U(1). In many cases the standard model hypercharge U(1) has no coupling to RR 2-forms and hence remains massless; in some of those models the B-L gauge boson does acquire a mass.
The embedding of the SM hypercharge into an orientifold gauge group is studied. Possible embeddings are classified, and a systematic construction of bottom-up configurations and top-down orientifold vacua is achieved, solving the tadpole conditions in the context of Gepner orientifolds. Some hypercharge embeddings are strongly preferred compared to others. Configurations with chiral antisymmetric tensors are suppressed. We find among others, genuine examples of supersymmetric SU(5), flipped SU(5), Pati-Salam and trinification vacua with no chiral exotics.
We summarize recent progress in constructing orientifolds of Gepner models, a phenomenologically interesting class of exactly solvable string compactifications with viable gauge groups and chiral matter.
String theory has no parameter except the string scale $M_S$, so the Planck scale $M_text{Pl}$, the supersymmetry-breaking scale, the EW scale $m_text{EW}$ as well as the vacuum energy density (cosmological constant) $Lambda$ are to be determined dynamically at any local minimum solution in the string theory landscape. Here we consider a model that links the supersymmetric electroweak phenomenology (bottom up) to the string theory motivated flux compactification approach (top down). In this model, supersymmetry is broken by a combination of the racetrack Kahler uplift mechanism, which naturally allows an exponentially small positive $Lambda$ in a local minimum, and the anti-D3-brane in the KKLT scenario. In the absence of the Higgs doublets in the supersymmetric standard model, one has either a small $Lambda$ or a big enough SUSY-breaking scale, but not both. The introduction of the Higgs fields (with their soft terms) allows a small $Lambda$ and a big enough SUSY-breaking scale simultaneously. Since an exponentially small $Lambda$ is statistically preferred (as the properly normalized probability distribution $P(Lambda)$ diverges at $Lambda=0^{+}$), identifying the observed $Lambda_{rm obs}$ to the median value $Lambda_{50%}$ yields $m_{rm EW} sim 100$ GeV. We also find that the warped anti-D3-brane tension has a SUSY-breaking scale of $100m_{rm EW}$ in the landscape while the SUSY-breaking scale that directly correlates with the Higgs fields in the visible sector has a value of $m_{rm EW}$.
157 - P. Athron 2009
We propose and study a constrained version of the Exceptional Supersymmetric Standard Model (E6SSM), which we call the cE6SSM, based on a universal high energy scalar mass m_0, trilinear scalar coupling A_0 and gaugino mass M_{1/2}. We derive the Renormalisation Group (RG) Equations for the cE6SSM, including the extra U(1)_{N} gauge factor and the low energy matter content involving three 27 representations of E6. We perform a numerical RG analysis for the cE6SSM, imposing the usual low energy experimental constraints and successful Electro-Weak Symmetry Breaking (EWSB). Our analysis reveals that the sparticle spectrum of the cE6SSM involves a light gluino, two light neutralinos and a light chargino. Furthermore, although the squarks, sleptons and Z boson are typically heavy, the exotic quarks and squarks can also be relatively light. We finally specify a set of benchmark points which correspond to particle spectra, production modes and decay patterns peculiar to the cE6SSM, altogether leading to spectacular new physics signals at the Large Hadron Collider (LHC).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا