Do you want to publish a course? Click here

New Vacuum of Bethe Ansatz Solutions in Thirring Model

100   0   0.0 ( 0 )
 Added by Takehisa Fujita
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We find a new vacuum of the Bethe ansatz solutions in the massless Thirring model. This vacuum breaks the chiral symmetry and has the lower energy than the well-known symmetric vacuum energy. Further, we evaluate the energy spectrum of the one particle-one hole ($1p-1h$) states, and find that it has a finite gap. The analytical expressions for the true vacuum as well as for the lowest $1p-1h$ excited state are also found. Further, we examine the bosonization of the massless Thirring model and prove that the well-known procedure of bosonization of the massless Thirring model is incomplete because of the lack of the zero mode in the boson field.



rate research

Read More

61 - H.Takahashi , A.Ogura 2000
We study an ambiguity of the current regularization in the Thirring model. We find a new current definition which enables to make a comprehensive treatment of the current. Our formulation is simpler than Klaibers formulation. We compare our result with other formulations and find a very good agreement with their result. We also obtain the Schwinger term and the general formula for any current regularization.
The full set of polynomial solutions of the nested Bethe Ansatz is constructed for the case of A_2 rational spin chain. The structure and properties of these associated solutions are more various then in the case of usual XXX (A_1) spin chain but their role is similar.
We develop an integrability-based framework to compute structure constants of two sub-determinant operators and a single-trace non-BPS operator in ABJM theory in the planar limit. In this first paper, we study them at weak coupling using a relation to an integrable spin chain. We first develop a nested Bethe ansatz for an alternating SU(4) spin chain that describes single-trace operators made out of scalar fields. We then apply it to the computation of the structure constants and show that they are given by overlaps between a Bethe eigenstate and a matrix product state. We conjecture that the determinant operator corresponds to an integrable matrix product state and present a closed-form expression for the overlap, which resembles the so-called Gaudin determinant. We also provide evidence for the integrability of general sub-determinant operators. The techniques developed in this paper can be applied to other quantities in ABJM theory including three-point functions of single-trace operators.
82 - N. Beisert , L. Freyhult 2005
We study fluctuations and finite size corrections for the ferromagnetic thermodynamic limit in the Bethe ansatz for the Heisenberg XXX1/2 spin chain, which is the AdS/CFT dual of semiclassical spinning strings. For this system we derive the standard quantum mechanical formula which expresses the energy shift as a sum over fluctuation energies. As an example we apply our results to the simplest, one-cut solution of this system and derive its spectrum of fluctuations.
73 - I.L. Aleiner 2021
I derived Bethe Ansatz equations for two model Periodic Quantum Circuits: 1) XXZ model; 2) Chiral Hubbard Model. I obtained explicit expressions for the spectra of the strings of any length. These analytic results may be useful for calibration and error mitigations in modern engineered quantum platforms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا