We study the minimal unitary representations of noncompact exceptional groups that arise as U-duality groups in extended supergravity theories. First we give the unitary realizations of the exceptional group E_{8(-24)} in SU*(8) as well as SU(6,2) covariant bases. E_{8(-24)} has E_7 X SU(2) as its maximal compact subgroup and is the U-duality group of the exceptional supergravity theory in d=3. For the corresponding U-duality group E_{8(8)} of the maximal supergravity theory the minimal realization was given in hep-th/0109005. The minimal unitary realizations of all the lower rank noncompact exceptional groups can be obtained by truncation of those of E_{8(-24)} and E_{8(8)}. By further truncation one can obtain the minimal unitary realizations of all the groups of the Magic Triangle. We give explicitly the minimal unitary realizations of the exceptional subgroups of E_{8(-24)} as well as other physically interesting subgroups. These minimal unitary realizations correspond, in general, to the quantization of their geometric actions as quasi-conformal groups as defined in hep-th/0008063.