We present a class of mappings between the fields of the Cremmer-Sherk and pure BF models in 4D. These mappings are established by two distinct procedures. First a mapping of their actions is produced iteratively resulting in an expansion of the fields of one model in terms of progressively higher derivatives of the other model fields. Secondly an exact mapping is introduced by mapping their quantum correlation functions. The equivalence of both procedures is shown by resorting to the invariance under field scale transformations of the topological action. Related equivalences in 5D and 3D are discussed. A cohomological argument is presented to provide consistency of the iterative mapping.