Recently Sekino and Yoneya proposed a way to regularize the world volume theory of membranes wrapped around $S^1$ by matrices and showed that one obtains matrix string theory as a regularization of such a theory. We show that this correspondence between matrix string theory and wrapped membranes can be obtained by using the usual M(atrix) theory techniques. Using this correspondence, we construct the super-Poincare generators of matrix string theory at the leading order in the perturbation theory. It is shown that these generators satisfy 10 dimensional super-Poincare algebra without any anomaly.
We study the world-volume theory of a bosonic membrane perturbatively and discuss if one can obtain any conditions on the number of space-time dimensions from the consistency of the theory. We construct an action which is suitable for such a study. In order to study the theory perturbatively we should specify a classical background around which perturbative expansion is defined. We will discuss the conditions which such a background should satisfy to deduce the critical dimension. Unfortunately we do not know any background satisfying such conditions. In order to get indirect evidences for the critical dimension of the membrane, we next consider two string models obtained via double dimensional reduction of the membrane. The first one reduces to the Polyakov string theory in the conformal gauge. The second one is described by the Schild action. We show that the critical dimension is 26 for these string theories, which implies that the critical dimension is 27 for the membrane theory.
We analyse two issues that arise in the context of (matrix) string theories in plane wave backgrounds, namely (1) the use of Brinkmann- versus Rosen-variables in the quantum theory for general plane waves (which we settle conclusively in favour of Brinkmann variables), and (2) the regularisation of the quantum dynamics for a certain class of singular plane waves (discussing the benefits and limitations of regularisations of the plane-wave metric itself).
The $SU(N)$--invariant matrix model potential is written as a sum of squares with only four frequencies (whose multiplicities and simple $N$--dependence are calculated).
The infrared behavior of perturbative quantum gravity is studied using the method developed for QED by Faddeev and Kulish. The operator describing the asymptotic dynamics is derived and used to construct an IR-finite S matrix and space of asymptotic states. All-orders cancellation of IR divergences is shown explicitly at the level of matrix elements for the example case of gravitational potential scattering. As a practical application of the formalism, the soft part of a scalar scattering amplitude is related to the gravitational Wilson line and computed to all orders.
In arXiv:1911.08172 we have studied the single-particle free energy of a class of Little String Theories of A-type, which are engineered by $N$ parallel M5-branes on a circle. To leading instanton order (from the perspective of the low energy $U(N)$ gauge theory) and partially also to higher order, a decomposition was observed, which resembles a Feynman diagrammatic expansion: external states are given by expansion coefficients of the $N=1$ BPS free energy and a quasi-Jacobi form that governs the BPS-counting of an M5-brane coupling to two M2-branes. The effective coupling functions were written as infinite series and similarities to modular graph functions were remarked. In the current work we continue and extend this study: Working with the full non-perturbative BPS free energy, we analyse in detail the cases $N=2,3$ and $4$. We argue that in these cases to leading instanton order all coupling functions can be written as a simple combination of two-point functions of a single free scalar field on the torus. We provide closed form expressions, which we conjecture to hold for generic $N$. To higher instanton order, we observe that a decomposition of the free energy in terms of higher point functions with the same external states is still possible but a priori not unique. We nevertheless provide evidence that tentative coupling functions are still combinations of scalar Greens functions, which are decorated with derivatives or multiplied with holomorphic Eisenstein series. We interpret these decorations as corrections of the leading order effective couplings and in particular link the latter to dihedral graph functions with bivalent vertices, which suggests an interpretation in terms of disconnected graphs.