Do you want to publish a course? Click here

Duals of noncommutative supersymmetric U(1) gauge theory

387   0   0.0 ( 0 )
 Added by Omer Faruk Dayi
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

Parent actions for component fields are utilized to derive the dual of supersymmetric U(1) gauge theory in 4 dimensions. Generalization of the Seiberg-Witten map to the component fields of noncommutative supersymmetric U(1) gauge theory is analyzed. Through this transformation we proposed parent actions for noncommutative supersymmetric U(1) gauge theory as generalization of the ordinary case.Duals of noncommutative supersymmetric U(1) gauge theory are obtained. Duality symmetry under the interchange of fields with duals accompanied by the replacement of the noncommutativity parameter Theta_{mu u} with tilde{Theta}_{mu u} = epsilon_{mu urhosigma}Theta^{rhosigma} of the non--supersymmetric case is broken at the level of actions. We proposed a noncommutative parent action for the component fields which generates actions possessing this duality symmetry.



rate research

Read More

122 - O.F.Dayi , L.T. Kelleyane 2006
A formulation of (non-anticommutative) N=1/2 supersymmetric U(N) gauge theory in noncommutative space is studied. We show that at one loop UV/IR mixing occurs. A generalization of Seiberg-Witten map to noncommutative and non-anticommutative superspace is employed to obtain an action in terms of commuting fields at first order in the noncommutativity parameter tetha. This leads to abelian and non-abelian gauge theories whose supersymmetry transformations are local and non-local, respectively.
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1) x U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
81 - O.F.Dayi , B. Yapiskan 2004
Equivalence of partition functions for U(1) gauge theory and its dual in appropriate phase spaces is established in terms of constrained hamiltonian formalism of their parent action. Relations between the electric--magnetic duality transformation and the (S) duality transformation which inverts the strong coupling domains to the weak coupling domains of noncommutative U(1) gauge theory are discussed in terms of the lagrangian and the hamiltonian densities. The approach presented for the commutative case is utilized to demonstrate that noncommutative U(1) gauge theory and its dual possess the same partition function in their phase spaces at the first order in the noncommutativity parameter theta .
We construct a non-commutative kappa-Minkowski deformation of U(1) gauge theory, following a general approach, recently proposed in JHEP 2008 (2020) 041. We obtain an exact (all orders in the non-commutativity parameter) expression for both the deformed gauge transformations and the deformed field strength, which is covariant under these transformations. The corresponding Yang-Mills Lagrangian is gauge covariant and reproduces the Maxwell Lagrangian in the commutative limit. Gauge invariance of the action functional requires a non-trivial integration measure which, in the commutative limit, does not reduce to the trivial one. We discuss the physical meaning of such a nontrivial commutative limit, relating it to a nontrivial space-time curvature of the undeformed theory. Moreover, we propose a rescaled kappa-Minkowski non-commutative structure, which exhibits a standard flat commutative limit.
We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on noncommutative spaces R^{2n}_theta x G/H which are manifestly G-symmetric. Given a G-representation, by twisting with a particular bundle over G/H, we obtain a G-equivariant U(k) bundle with a G-equivariant connection over R^{2n}_theta x G/H. The U(k) Donaldson-Uhlenbeck-Yau equations on these spaces reduce to vortex-type equations in a particular quiver gauge theory on R^{2n}_theta. Seiberg-Witten monopole equations are particular examples. The noncommutative BPS configurations are formulated with partial isometries, which are obtained from an equivariant Atiyah-Bott-Shapiro construction. They can be interpreted as D0-branes inside a space-filling brane-antibrane system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا