No Arabic abstract
We consider a non-anticommutative N=2 superspace with an SU(2) singlet and Lorentz scalar deformation parameter, ${theta^{alpha i},theta^{beta j}}_star = -2iP e^{alphabeta}e^{ij}$. We exploit this unique feature of the N=2 case to construct a deformation of the non-Abelian super-Yang-Mills theory which preserves the full N=2 supersymmetry together with the SU(2) R symmetry and Lorentz invariance. The resulting action describes a kind of heterotic special geometry with antiholomorphic prepotential $bar f(barphi) = Tr (barphi^2 (1+Pbarphi)^{-2})$.
We find a formulation of $mathcal{N}=2$ supersymmetric Yang-Mills theory in Projective superspace. In particular we find an expression for the field strength in terms of an unconstrained prepotential which is desirable when quantizing the theory. We use this to write the action in terms of the prepotential and show that it reduces to the known result in the abelian limit.
The N=2* Super-Yang-Mills theory (SYM*) undergoes an infinite sequence of large-N quantum phase transitions. We compute expectation values of Wilson loops in k-symmetric and antisymmetric representations of the SU(N) gauge group in this theory and show that the same phenomenon that causes the phase transitions at finite coupling leads to a non-analytic dependence of Wilson loops on k/N when the coupling is strictly infinite, thus making the higher-representation Wilson loops ideal holographic probes of the non-trivial phase structure of SYM*.
This is a sequel of our paper hep-th/0606125 in which we have studied the {cal N}=1 SU(N) SYM theory obtained as a marginal deformation of the {cal N}=4 theory, with a complex deformation parameter beta and in the planar limit. There we have addressed the issue of conformal invariance imposing the theory to be finite and we have found that finiteness requires reality of the deformation parameter beta. In this paper we relax the finiteness request and look for a theory that in the planar limit has vanishing beta functions. We perform explicit calculations up to five loop order: we find that the conditions of beta function vanishing can be achieved with a complex deformation parameter, but the theory is not finite and the result depends on the arbitrary choice of the subtraction procedure. Therefore, while the finiteness condition leads to a scheme independent result, so that the conformal invariant theory with a real deformation is physically well defined, the condition of vanishing beta function leads to a result which is scheme dependent and therefore of unclear significance. In order to show that these findings are not an artefact of dimensional regularization, we confirm our results within the differential renormalization approach.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We construct the D3-brane solution in the holographic dual of the N = 2* theory that describes Wilson lines in symmetric representations of the gauge group. The results perfectly agree with the direct field-theory predictions based on localization.