Do you want to publish a course? Click here

Singular supersymmetric sigma models

127   0   0.0 ( 0 )
 Added by J. W. van Holten
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

Supersymmetric non-linear sigma-models are described by a field dependent Kaehler metric determining the kinetic terms. In general it is not guaranteed that this metric is always invertible. Our aim is to investigate the symmetry structure of supersymmetric models in four dimensional space-time in which metric singularities occur. For this purpose we study a simple anomaly-free extension of the supersymmetric CP^1 model from a classical point of view. We show that the metric singularities can be regularized by the addition of a soft supersymmetry-breaking mass parameter.



rate research

Read More

In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar and their conjugate superfields. Here we introduce CCL sigma models that are invariant under U(1) duality rotations exchanging the dynamical variables and their equations of motion. The Lagrangians of such sigma models prove to obey a partial differential equation that is analogous to the self-duality equation obeyed by U(1) duality invariant models for nonlinear electrodynamics. These sigma models are self-dual under a Legendre transformation that simultaneously dualises (i) the chiral multiplet into a complex linear one; and (ii) the complex linear multiplet into a chiral one. Any CCL sigma model possesses a dual formulation given in terms of two chiral multiplets. The U(1) duality invariance of the CCL sigma model proves to be equivalent, in the dual chiral formulation, to a manifest U(1) invariance rotating the two chiral scalars. Since the target space has a holomorphic Killing vector, the sigma model possesses a third formulation realised in terms of a chiral multiplet and a tensor multiplet. The family of U(1) duality invariant CCL sigma models includes a subset of N=2 supersymmetric theories. Their target spaces are hyper Kahler manifolds with a non-zero Killing vector field. In the case that the Killing vector field is triholomorphic, the sigma model admits a dual formulation in terms of a self-interacting off-shell N=2 tensor multiplet. We also identify a subset of CCL sigma models which are in a one-to-one correspondence with the U(1) duality invariant models for nonlinear electrodynamics. The target space isometry group for these sigma models contains a subgroup U(1) x U(1).
It is known that supersymmetric nonlinear sigma models for the compact Kahler manifolds G/H cannot be consistently coupled to supergravity, since the Kahler potentials are not invariant under the G transformation. We show that the supersymmetric nonlinear sigma models can be deformed such that the Kahler potential be exactly G-invariant if and only if one enlarges the manifolds by dropping all the U(1)s in the unbroken subgroup H. Then, those nonlinear sigma models can be coupled to supergravity without losing the G invariance.
We construct connected (0,2) sigma models starting from n copies of (2,2) CP(N-1) models. General aspects of models of this type (known as T+O deformations) had been previously studied in the context of heterotic string theories. Our construction presents a natural generalization of the nonminimally deformed (2,2) model with an extra (0,2) fermion superfield on tangent bundle T CP(N-1) x C^1. We had thoroughly analyzed the latter model previously, found the exact beta function and a spontaneous breaking of supersymmetry. In contrast, in certain connected sigma models the spontaneous breaking of supersymmetry disappears. We study the connected sigma models in the large-N limit finding supersymmetric vacua and determining the particle spectrum. While the Witten index vanishes in all the models under consideration, in these special cases of connected models one can use a permutation symmetry to define a modification of the Witten index which does not vanish. This eliminates the spontaneous breaking of supersymmetry. We then examine the exact beta functions of our connected (0,2) sigma models.
There exist two superspace approaches to describe N=2 supersymmetric nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS projective-superspace techniques developed in arXiv:0807.3368. The virtue of the approach (i) is that it makes manifest the geometric properties of the N=2 supersymmetric sigma-models in AdS_4. The target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures. The power of the approach (ii) is that it allows us, in principle, to generate hyperkahler metrics as well as to address the problem of deformations of such metrics. Here we show how to relate the formulation (ii) to (i) by integrating out an infinite number of N=1 AdS auxiliary superfields and performing a superfield duality transformation. We also develop a novel description of the most general N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral superfields on three-dimensional N=2 flat superspace without central charge. This superspace naturally originates from a conformally flat realization for the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates for AdS_4. This novel formulation allows us to uncover several interesting geometric results.
161 - S. A. Fedoruk , E. A. Ivanov , 2012
We derive and discuss, at both the classical and the quantum levels, generalized N = 2 supersymmetric quantum mechanical sigma models describing the motion over an arbitrary real or an arbitrary complex manifold with extra torsions. We analyze the relevant vacuum states to make explicit the fact that their number is not affected by adding the torsion terms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا