No Arabic abstract
The thermal one- and two-graviton Greens function are computed using a temporal gauge. In order to handle the extra poles which are present in the propagator, we employ an ambiguity-free technique in the imaginary-time formalism. For temperatures T high compared with the external momentum, we obtain the leading T^4 as well as the subleading T^2 and log(T) contributions to the graviton self-energy. The gauge fixing independence of the leading T^4 terms as well as the Ward identity relating the self-energy with the one-point function are explicitly verified. We also verify the t Hooft identities for the subleading T^2 terms and show that the logarithmic part has the same structure as the residue of the ultraviolet pole of the zero temperature graviton self-energy. We explicitly compute the extra terms generated by the prescription poles and verify that they do not change the behavior of the leading and sub-leading contributions from the hard thermal loop region. We discuss the modification of the solutions of the dispersion relations in the graviton plasma induced by the subleading T^2 contributions.
We propose a new type of gauge in two-dimensional quantum gravity. We investigate pure gravity in this gauge, and find that the system reduces to quantum mechanics of loop length $l$. Furthermore, we rederive the $c!=!0$ string field theory which was discovered recently. In particular, the pregeometric form of the Hamiltonian is naturally reproduced.
We evaluate the four-closed-string scattering amplitude, using the Polyakov string path integral in the proper-time gauge. By identifying the Fock space representation of the four-closed-string-vertex, we obtain a field theoretic expression of the closed string scattering amplitudes. In the zero-slope limit, the four-closed-string scattering amplitude reduces to the four-graviton-scattering amplitude of Einsteins gravity. However, at a finite slope, the four-graviton scattering amplitude in the proper-time gauge differs not only from that of Einstein gravity, but also significantly differs from the conventional one obtained by using the vertex operator technique in string theory. This discrepancy is mainly due to the presence of closed string tachyon poles in the four-graviton-scattering amplitude, which are missing in previous works. Because the tachyon poles in the scattering amplitude considerably alter the short distance behavior of gravitational interaction, they may be important in understanding problems associated with the perturbative theory of quantum gravity and the dark matter within the framework of string theory.
We consider the one-loop five-graviton amplitude in type II string theory calculated in the light-cone gauge. Although it is not possible to explicitly evaluate the integrals over the positions of the vertex operators, a low-energy expansion can be obtained, which can then be used to infer terms in the low-energy effective action. After subtracting diagrams due to known D^{2n}R^4 terms, we show the absence of one-loop R^5 and D^2R^5 terms and determine the exact structure of the one-loop D^4R^5 terms where, interestingly, the coefficient in front of the D^4R^5 terms is identical to the coefficient in front of the D^6R^4 term. Finally, we show that, up to D^6R^4 ~ D^4R^5, the epsilon_{10} terms package together with the t_8 terms in the usual combination (t_8t_8pm{1/8}epsilon_{10}epsilon_{10}).
We review some applications of self-consistent Greens function theory to studies of one- and two-nucleon structure in finite nuclei. Large-scale microscopic calculations that employ realistic nuclear forces are now possible. Effects of long-range correlations are seen to play a dominant role in determining the quenching of absolute spectroscopic factors. They also enhance considerably (e,epn) cross sections in superparallel kinematics, in agreement with observations.
The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and $(1-n_{s}) = 0.042$, where $n_{s}$ is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.