Do you want to publish a course? Click here

On Scherk-Schwarz mechanism in gauged five-dimensional supergravity and on its relation to bigravity

131   0   0.0 ( 0 )
 Added by Zygmunt Lalak
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We demonstrate the relation between the Scherk-Schwarz mechanism and flipped gauged brane-bulk supergravities in five dimensions. We discuss the form of supersymmetry violating Scherk-Schwarz terms in pure supergravity and in supergravity coupled to matter. We point out that brane-induced supersymmetry breakdown in 5d Horava-Witten model is not of the Scherk-Schwarz type. We discuss in detail flipped super-bigravity, which is the locally supersymmetric extension of the (++) bigravity.



rate research

Read More

100 - Gianluca Inverso 2017
A procedure is described to construct generalised Scherk-Schwarz uplifts of gauged supergravities. The internal manifold, fluxes, and consistent truncation Ansatz are all derived from the embedding tensor of the lower-dimensional theory. We first describe the procedure to construct generalised Leibniz parallelisable spaces where the vector components of the frame are embedded in the adjoint representation of the gauge group, as specified by the embedding tensor. This allows us to recover the generalised Scherk-Schwarz reductions known in the literature and to prove a no-go result for the uplift of $omega$-deformed SO(p,q) gauged maximal supergravities. We then extend the construction to arbitrary generalised Leibniz parallelisable spaces, which turn out to be torus fibrations over manifolds in the class above.
We demonstrate the relation between the Scherk-Schwarz mechanism and flipped gauged brane-bulk supergravities in five dimensions. We discuss the form of supersymmetry violating Scherk-Schwarz terms in pure supergravity and in supergravity coupled to matter. Although the Lagrangian mass terms that arise as the result of the Scherk-Schwarz redefinition of fields are naturally of the order of the inverse radius of the orbifold, the effective 4d physical mass terms are rather set by the scale sqrt{|bar{Lambda}|}, where bar{Lambda} is the 4d cosmlogical constant.
We study the effect of Scherk-Schwarz deformations on intersecting branes. Non-chiral fermions in any representation of the Chan-Paton gauge group generically acquire a tree-level mass dependent on the compactification radius and the brane wrapping numbers. This offers an elegant solution to one of the long-standing problems in intersecting-brane-world models where the ubiquitous presence of massless non-chiral fermions is a clear embarrassment for any attempt to describe the Standard Model of Particle Physics.
200 - Shuang-Qing Wu 2007
We present the general exact solutions for non-extremal rotating charged black holes in the Godel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four non-trivial parameters, namely the mass $m$, the charge $q$, the Kerr equal rotation parameter $a$, and the Godel parameter $j$. We calculate the conserved energy, angular momenta and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. We also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Godel black hole backgrounds.
We present a projective superspace formulation for matter-coupled simple supergravity in five dimensions. Our starting point is the superspace realization for the minimal supergravity multiplet proposed by Howe in 1981. We introduce various off-shell supermultiplets (i.e. hypermultiplets, tensor and vector multiplets) that describe matter fields coupled to supergravity. A projective-invariant action principle is given, and specific dynamical systems are constructed including supersymmetric nonlinear sigma-models. We believe that this approach can be extended to other supergravity theories with eight supercharges in $Dleq 6$ space-time dimensions, including the important case of 4D N=2 supergravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا