Integrable aspects of the scaling q-state Potts models I: bound states and bootstrap closure


Abstract in English

We discuss the q-state Potts models for q<=4, in the scaling regimes close to their critical or tricritical points. Starting from the kink S-matrix elements proposed by Chim and Zamolodchikov, the bootstrap is closed for the scaling regions of all critical points, and for the tricritical points when 4>q>=2. We also note a curious appearance of the extended last line of Freudenthals magic square in connection with the Potts models.

Download