No Arabic abstract
We consider the set of controlled time-dependent backgrounds of general relativity and string theory describing ``bubbles of nothing, obtained via double analytic continuation of black hole solutions. We analyze their quantum stability, uncover some novel features of their dynamics, identify their causal structure and observables, and compute their particle production spectrum. We present a general relation between squeezed states, such as those arising in cosmological particle creation, and nonlocal theories on the string worldsheet. The bubble backgrounds have various aspects in common with de Sitter space, Rindler space, and moving mirror systems, but constitute controlled solutions of general relativity and string theory with no external forces. They provide a useful theoretical laboratory for studying issues of observables in systems with cosmological horizons, particle creation, and time-dependent string perturbation theory.
We develop a method for obtaining exact time-dependent solutions in Jackiw-Teitelboim gravity coupled to non-conformal matter and study consequences for $NAdS_2$ holography. We study holographic quenches in which we find that the black hole mass increases. A semi-holographic model composed of an infrared $NAdS_2$ holographic sector representing the mutual strong interactions of trapped impurities confined at a spatial point is proposed. The holographic sector couples to the position of a displaced impurity acting as a self-consistent boundary source. This effective $0+1-$dimensional description has a total conserved energy. Irrespective of the initial velocity of the particle, the black hole mass initially increases, but after the horizon runs away to infinity in the physical patch, the mass vanishes in the long run. The total energy is completely transferred to the kinetic energy or the self-consistent confining potential energy of the impurity. For initial velocities below a critical value determined by the mutual coupling, the black hole mass changes sign in finite time. Above this critical velocity, the initial condition of the particle can be retrieved from the $SL(2,R)$ invariant exponent that governs the exponential growth of the bulk gravitational $SL(2,R)$ charges at late time.
We describe hierarchies of exact string backgrounds obtained as non-Abelian cosets of orthogonal groups and having a space--time realization in terms of gauged WZW models. For each member in these hierarchies, the target-space backgrounds are generated by the ``boundary backgrounds of the next member. We explicitly demonstrate that this property holds to all orders in $alpha$. It is a consequence of the existence of an integrable marginal operator build on, generically, non-Abelian parafermion bilinears. These are dressed with the dilaton supported by the extra radial dimension, whose asymptotic value defines the boundary. Depending on the hierarchy, this boundary can be time-like or space-like with, in the latter case, potential cosmological applications.
We consider scalar perturbations in the time-dependent Hou{r}ava-Witten Model in order to probe its stability. We show that during the non-singular epoque the model evolves without instabilities until it encounters the curvature singularity where a big crunch is supposed to occur. We compute the frequencies of the scalar field oscillation during the stable period and show how the oscillations can be used to prove the presence of such a singularity.
We study the dynamics of type I strings on Melvin backgrounds, with a single or multiple twisted two-planes. We construct two inequivalent types of orientifold models that correspond to (non-compact) irration
In this paper we look for AdS solutions to generalised gravity theories in the bulk in various spacetime dimensions. The bulk gravity action includes the action of a non-minimally coupled scalar field with gravity, and a higher-derivative action of gravity. The usual Einstein-Hilbert gravity is induced when the scalar acquires a non-zero vacuum expectation value. The equation of motion in the bulk shows scenarios where AdS geometry emerges on-shell. We further obtain the action of the fluctuation fields on the background at quadratic and cubic orders.