Do you want to publish a course? Click here

On the Generation of a Scale-Invariant Spectrum of Adiabatic Fluctuations in Cosmological Models with a Contracting Phase

82   0   0.0 ( 0 )
 Added by Fabio Finelli
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

In Pre-Big-Bang and in Ekpyrotic Cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of Pre-Big-Bang nor of the Ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for Pre-Big-Bang and for Ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past.



rate research

Read More

We consider the effect of compactification of extra dimensions on the onset of classical chaotic Mixmaster behavior during cosmic contraction. Assuming a universe that is well-approximated as a four-dimensional Friedmann-Robertson--Walker model (with negligible Kaluza-Klein excitations) when the contraction phase begins, we identify compactifications that allow a smooth contraction and delay the onset of chaos until arbitrarily close the big crunch. These compactifications are defined by the de Rham cohomology (Betti numbers) and Killing vectors of the compactification manifold. We find compactifications that control chaos in vacuum Einstein gravity, as well as in string theories with N = 1 supersymmetry and M-theory. In models where chaos is controlled in this way, the universe can remain homogeneous and flat until it enters the quantum gravity regime. At this point, the classical equations leading to chaotic behavior can no longer be trusted, and quantum effects may allow a smooth approach to the big crunch and transition into a subsequent expanding phase. Our results may be useful for constructing cosmological models with contracting phases, such as the ekpyrotic/cyclic and pre-big bang models.
A period of slow contraction with equation of state w > 1, known as an ekpyrotic phase, has been shown to flatten and smooth the universe if it begins the phase with small perturbations. In this paper, we explore how robust and powerful the ekpyrotic smoothing mechanism is by beginning with highly inhomogeneous and anisotropic initial conditions and numerically solving for the subsequent evolution of the universe. Our studies, based on a universe with gravity plus a scalar field with a negative exponential potential, show that some regions become homogeneous and isotropic while others exhibit inhomogeneous and anisotropic behavior in which the scalar field behaves like a fluid with w=1. We find that the ekpyrotic smoothing mechanism is robust in the sense that the ratio of the proper volume of the smooth to non-smooth region grows exponentially fast along time slices of constant mean curvature.
Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, $K(phi_i) =$ constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a global Weyl scale symmetry and its conserved current, $K_mu$ . At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.
We consider the four-dimensional effective field theory which has been used in previous studies of perturbations in the Ekpyrotic Universe, and discuss the spectrum of cosmological fluctuations induced on large scales by quantum fluctuations of the bulk brane. By matching cosmological fluctuations on a constant energy density hypersurface we show that the growing mode during the very slow collapsing pre-impact phase couples only to the decaying mode in the expanding post-impact phase, and that hence no scale-invariant spectrum of adiabatic fluctuations is generated. Note that our conclusions may not apply to improved toy models for the Ekpyrotic scenario.
We argue that the exact degeneracy of vacua in N=1 supergravity can shed light on the smallness of the cosmological constant. The presence of such vacua, which are degenerate to very high accuracy, may also result in small values of the quartic Higgs coupling and its beta function at the Planck scale in the phase in which we live.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا