Do you want to publish a course? Click here

Geometry of WZW Orientifolds

83   0   0.0 ( 0 )
 Added by Koenraad Schalm
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

We analyze unoriented Wess-Zumino-Witten models from a geometrical point of view. We show that the geometric interpretation of simple current crosscap states is as centre orientifold planes localized on conjugacy classes of the group manifold. We determine the locations and dimensions of these planes for arbitrary simply-connected groups and orbifolds thereof. The dimensions of the O-planes turn out to be given by the dimensions of symmetric coset manifolds based on regular embeddings. Furthermore, we give a geometrical interpretation of boundary conjugation in open unoriented WZW models; it yields D-branes together with their images under the orientifold projection. To find the agreement between O-planes and crosscap states, we find explicit answers for lattice extensions of Gaussian sums. These results allow us to express the modular P-matrix, which is directly related to the crosscap coefficient, in terms of characters of the horizontal subgroup of the affine Lie algebra. A corollary of this relation is that there exists a formal linear relation between the modular P- and the modular S-matrix.



rate research

Read More

We analyse the problem of assigning sign choices to O-planes in orientifolds of type II string theory. We show that there exists a sequence of invariant $p$-gerbes with $pgeq-1$, which give rise to sign choices and are related by coboundary maps. We prove that the sign choice homomorphisms stabilise with the dimension of the orientifold and we derive topological constraints on the possible sign configurations. Concrete calculations for spherical and toroidal orientifolds are carried out, and in particular we exhibit a four-dimensional orientifold where not every sign choice is geometrically attainable. We elucidate how the $K$-theory groups associated with invariant $p$-gerbes for $p=-1,0,1$ interact with the coboundary maps. This allows us to interpret a notion of $K$-theory due to Gao and Hori as a special case of twisted $KR$-theory, which consequently implies the homotopy invariance and Fredholm module description of their construction.
We summarize recent progress in constructing orientifolds of Gepner models, a phenomenologically interesting class of exactly solvable string compactifications with viable gauge groups and chiral matter.
The aim of this paper is to study orientifolds of c=1 conformal field theories. A systematic analysis of the allowed orientifold projections for c=1 orbifold conformal field theories is given. We compare the Klein bottle amplitudes obtained at rational points with the orientifold projections that we claim to be consistent for any value of the orbifold radius. We show that the recently obtained Klein bottle amplitudes corresponding to exceptional modular invariants, describing bosonic string theories at fractional square radius, are also in agreement with those orientifold projections.
We study the dynamics of type I strings on Melvin backgrounds, with a single or multiple twisted two-planes. We construct two inequivalent types of orientifold models that correspond to (non-compact) irration
99 - L.R. Huiszoon 2002
The simple current construction of orientifolds based on rational conformal field theories is reviewed. When applied to SO(16) level 1, one can describe all ten-dimensional orientifolds in a unified framework.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا