After a short introduction to Matrix theory, we explain how can one generalize matrix models to describe toroidal compactifications of M-theory and the heterotic vacua with 16 supercharges. This allows us, for the first time in history, to derive the conventional perturbative type IIA string theory known in the 80s within a complete and consistent nonperturbative framework, using the language of orbifold conformal field theory and conformal perturbation methods. A separate chapter is dedicated to the vacua with Horava-Witten domain walls that carry E8 gauge supermultiplets. Those reduce the gauge symmetry of the matrix model from U(N) to O(N). We also explain why these models contain open membranes. The compactification of M-theory on T4 involves the so-called (2,0) superconformal field theory in six dimensions, compactified on T5. A separate chapter describes an interesting topological contribution to the low energy equations of motion on the Coulomb branch of the (2,0) theory that admits a skyrmionic solution that we call ``knitting fivebranes. Then we return to the orbifolds of Matrix theory and construct a formal classical matrix model of the Scherk-Schwarz compactification of M-theory and type IIA string theory as well as type 0 theories. We show some disastrous consequences of the broken supersymmetry. Last two chapters describe a hyperbolic structure of the moduli spaces of one-dimensional M-theory.