Do you want to publish a course? Click here

A note on the heat kernel method applied to fermions

57   0   0.0 ( 0 )
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

The spectrum of the fermionic operators depending on external fields is an important object in Quantum Field Theory. In this paper we prove, using transition to the alternative basis for the $gamma$-matrices, that this spectrum does not depend on the sign of the fermion mass, up to a constant factor. This assumption has been extensively used, but usually without proof. As an illustration, we calculated the coincidence limit of the coefficient $a_2(x,x^prime)$ on the general metric background, vector and axial vector fields.



rate research

Read More

We develop a new heat kernel method that is suited for a systematic study of the renormalization group flow in Horava gravity (and in Lifshitz field theories in general). This method maintains covariance at all stages of the calculation, which is achieved by introducing a generalized Fourier transform covariant with respect to the nonrelativistic background spacetime. As a first test, we apply this method to compute the anisotropic Weyl anomaly for a (2+1)-dimensional scalar field theory around a z=2 Lifshitz point and corroborate the previously found result. We then proceed to general scalar operators and evaluate their one-loop effective action. The covariant heat kernel method that we develop also directly applies to operators with spin structures in arbitrary dimensions.
86 - Gerald V. Dunne 2021
The heat kernel expansion on even-dimensional hyperbolic spaces is asymptotic at both short and long times, with interestingly different Borel properties for these short and long time expansions. Resummations in terms of incomplete gamma functions provide accurate extrapolations and analytic continuations, relating the heat kernel to the Schrodinger kernel, and the heat kernel on hyperbolic space to the heat kernel on spheres. For the diagonal heat kernel there is also a duality between short and long times which mixes the scalar and spinor heat kernels.
We consider different methods of calculating the (fractional) fermion number of solitons based on the heat kernel expansion. We derive a formula for the localized eta function a more systematic version of the derivative expansion for spectral assymmetry and that provides a more systematic version of the derivative expansion for spectral asymmetry and compute the fermion number in a multiflavour extension of the Goldstone-Wilczek model.We also propose an improved expansionof the heat kernelthat allows the tackling ofthe convergence issues and permits an automated computation of the coefficients
Heat-kernel expansion and zeta function regularisation are discussed for Laplace type operators with discrete spectrum in non compact domains. Since a general theory is lacking, the heat-kernel expansion is investigated by means of several examples. It is pointed out that for a class of exponential (analytic) interactions, generically the non-compactness of the domain gives rise to logarithmic terms in the heat-kernel expansion. Then, a meromorphic continuation of the associated zeta function is investigated. A simple model is considered, for which the analytic continuation of the zeta function is not regular at the origin, displaying a pole of higher order. For a physically meaningful evaluation of the related functional determinant, a generalised zeta function regularisation procedure is proposed.
67 - Ye Zhang 2021
The aim of this note is twofold. The first one is to find conditions on the asymptotic sequence which ensures differentiation of a general asymptotic expansion with respect to it. Our method results from the classical one but generalizes it. As an application, our second aim is to give sharp asymptotic estimates at infinity of the heat kernel on H-type groups by the method of differentiation provided we have the result of the isotropic Heisenberg groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا