Do you want to publish a course? Click here

Boundaries, crosscaps and simple currents

46   0   0.0 ( 0 )
 Added by Johannes Walcher
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

Universal formulas for the boundary and crosscap coefficients are presented, which are valid for all symmetric simple current modifications of the charge conjugation invariant of any rational conformal field theory.



rate research

Read More

Open descendants with boundaries and crosscaps of non-trivial automorphism type are studied. We focus on the case where the bulk symmetry is broken to a Z_2 orbifold subalgebra. By requiring positivity and integrality for the open sector, we derive a unique crosscap of automorphism type g in Z_2 and a corresponding g-twisted Klein bottle for a charge conjugation invariant. As a specific example, we use T-duality to construct the descendants of the true diagonal invariant with symmetry preserving crosscaps and boundaries.
We study transport properties of discrete quantum dynamical systems on the lattice, in particular Coined Quantum Walks and the Chalker--Coddington model. We prove existence of a non trivial charge transport and that the absolutely continuous spectrum covers the whole unit circle under mild assumptions. For Quantum Walks we exhibit explicit constructions of coins which imply existence of stable directed quantum currents along classical curves. The results are of topological nature and independent of the details of the model.
82 - J. Mourad , A. Sagnotti 2020
We address some general issues related to torsion and Noether currents for Fermi fields in the presence of boundaries, with emphasis on the conditions that guarantee charge conservation. We also describe exact solutions of these boundary conditions and some implications for string vacua with broken supersymmetry.
We study the basin of attraction of static extremal black holes, in the concrete setting of the STU model. By finding a connection to a decoupled Toda-like system and solving it exactly, we find a simple way to characterize the attraction basin via competing behaviors of certain parameters. The boundaries of attraction arise in the various limits where these parameters degenerate to zero. We find that these boundaries are generalizations of the recently introduced (extremal) subtracted geometry: the warp factors still exhibit asymptotic integer power law behaviors, but the powers can be different from one. As we cross over one of these boundaries (generalized subttractors), the solutions turn unstable and start blowing up at finite radius and lose their asymptotic region. Our results are fully analytic, but we also solve a simpler theory where the attraction basin is lower dimensional and easy to visualize, and present a simple picture that illustrates many of the basic ideas.
We study the spectrum of the scaling Lee-Yang model on a finite interval from two points of view: via a generalisation of the truncated conformal space approach to systems with boundaries, and via the boundary thermodynamic Bethe ansatz. This allows reflection factors to be matched with specific boundary conditions, and leads us to propose a new (and non-minimal) family of reflection factors to describe the one relevant boundary perturbation in the model. The equations proposed previously for the ground state on an interval must be revised in certain regimes, and we find the necessary modifications by analytic continuation. We also propose new equations to describe excited states, and check all equations against boundary truncated conformal space data. Access to the finite-size spectrum enables us to observe boundary flows when the bulk remains massless, and the formation of boundary bound states when the bulk is massive.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا