No Arabic abstract
Due to the coherence of all the protons in a nucleus, there are very strong electromagnetic fields of short duration in relativistic heavy ion collisions. They give rise to quasireal photon-photon and photon-nucleus collisions with a large flux. RHIC will begin its experimental program this year and such types of collisions will be studied experimentally at the STAR detector. RHIC will have the highest flux of (quasireal) photons up to now in the GeV region. At the LHC the invariant mass range available in gamma-gamma-interactions will be of the order of 100 GeV, i.e., in the range currently available at LEP2, but with a higher gamma-gamma-luminosity. Therefore one has there also the potential to study new physics. (Quasireal) photon-hadron (i.e., photon-nucleus) interactions can be studied as well, similar to HERA, at higher invariant masses. Vector mesons can be produced coherently through photon-Pomeron and photon-meson interactions in exclusive reactions such as A+A -> A+A+V, where A is the heavy ion and V=rho,omega,phi or J/Psi.
Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.
The physics potential of a high-energy photon collider is reviewed. The emphasis is put on aspects related to the symmetry breaking sector, including Higgs searches and production of longitudinal vector bosons.
We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vector-like quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as $gg to hh$ and $gammagammato hh$, where $h$ is the (lightest) Higgs boson and $g$ and $gamma$ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of $e^+e^-to hhZ$ and $gammagammato hh$ can be enhanced due to the non-decoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for $ggto hh$ becomes very large because of the loop effect of the fermions. In the vector-like quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.
A review of results on top quark physics expected at the Photon Linear Colliders is presented.
In this paper we analyse the double vector meson production in photon -- hadron ($gamma h$) interactions at $pp/pA/AA$ collisions and present predictions for the $rhorho$, $J/Psi J/Psi$ and $rho J/Psi$ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in $gamma gamma$ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS and LHCb Collaborations. Our results demonstrate that the $rhorho$ and $J/Psi J/Psi$ production in $PbPb$ collisions is dominated by the double scattering mechanism, while the two - photon mechanism dominates in $pp$ collisions. Moreover, our results indicate that the analysis of the $rho J/Psi$ production at LHC can be useful to constrain the double scattering mechanism.