No Arabic abstract
We present the complete 2-loop renormalisation group equations of the superpotential parameters for the supersymmetric standard model including the full set of R-parity violating couplings. We use these equations to do a study of (a) gauge coupling unification, (b) bottom-tau unification, (c) the fixed-point structure of the top quark Yukawa coupling, and (d) two-loop bounds from perturbative unification. For large values of the R-parity violating coupling, the value of alpha_S(M_Z) predicted from unification can be reduced by 5% with respect to the R-parity conserving case, bringing it to within 2sigma of the observed value. Bottom-tau Yukawa unification becomes potentially valid for any value of tanbetasim 2-50. The prediction of the top Yukawa coupling from the low tanbeta, infra-red quasi fixed point can be lowered by up to 10%, raising tanbeta up to a maximum of 5 and relaxing experimental constraints upon the quasi-fixed point scenario. For heavy scalar fermion masses of order 1 Tev the limits on the higher family Delta L ot=0 operators from perturbative unification are competitive with the indirect laboratory bounds. We calculate the dependence of these bounds upon tan beta.
We consider the supersymmetric extension of the Standard Model with neutrino Yukawa interactions and R-parity violation. We found that R-parity breaking term lambda u H_u H_d leads to an additional F-type contribution to the Higgs scalar potential, and thus to the masses of supersymmetric Higgs bosons. The most interesting consequence is the modification of the tree-level expression for the lightest neutral supersymmetric Higgs boson mass. It appears that due to this contribution the bound on the lightest Higgs mass may be shifted upwards, thus slightly opening the part of the model parameter space excluded by non-observation of the light Higgs boson at LEP in the framework of the Minimal Supersymmetric Standard Model.
We analize the impact of two-loop renormalization group equations on the $SU(3)_ctimes SU(2)_wtimes U(1)_Y$ gauge couplings unification in various supersymmetric theories. In general the presence of superfields in higher representation than the doublet spoil the gauge couplings unification at one-loop. The situation is more interesting when the renormalization group equations are calculated at two-loop. In this case we show that the unification of the gauge couplings can be achieved for models with triplet superfield(s). In the analysis of the models with triplet superfield(s) we show that the dimensionless couplings do not have a Landau pole in their evolution at high energies but they run to a nontrivial ultraviolet fixed point.
We present the full two-loop $beta$-functions for the minimal supersymmetric standard model couplings, extended to include R-parity violating couplings through explicit R-parity violation.
For arbitrary scalar QFTs in four dimensions, renormalisation group equations of quartic and cubic interactions, mass terms, as well as field anomalous dimensions are computed at three-loop order in the $overline{text{MS}}$ scheme. Utilising pre-existing literature expressions for a specific model, loop integrals are avoided and templates for general theories are obtained. We reiterate known four-loop expressions, and derive $beta$ functions for scalar masses and cubic interactions from it. As an example, the results are applied to compute all renormalisation group equations in $U(n) times U(n)$ scalar theories.
For arbitrary four-dimensional quantum field theories with scalars and fermions, renormalisation group equations in the $overline{text{MS}}$ scheme are investigated at three-loop order in perturbation theory. Collecting literature results, general expressions are obtained for field anomalous dimensions, Yukawa interactions, as well as fermion masses. The renormalisation group evolution of scalar quartic, cubic and mass terms is determined up to a few unknown coefficients. The combined results are applied to compute the renormalisation group evolution of the gaugeless Litim-Sannino model.