If observed, charged lepton flavour violation is a clear sign of new physics - beyond the Standard Model minimally extended to accommodate neutrino oscillation data. We briefly review several extensions of the Standard Model which could potentially give rise to observable signals, also emphasising the r^ole of charged lepton flavour violation in probing such new physics models.
In this work, we revise the conventional description of J/Psi(1S), Y(1S), Psi(2S) and Y(2S) elastic photo- and electroproduction off a nucleon target within the color dipole picture and carefully study various sources of theoretical uncertainties in calculations of the corresponding electroproduction cross sections. For this purpose, we test the corresponding predictions using a bulk of available dipole cross section parametrisations obtained from deep inelastic scattering data at HERA. Specifically, we provide the detailed analysis of the energy and hard-scale dependencies of quarkonia yields employing the comprehensive treatment of the quarkonia wave functions in the Schroedinger equation based approach for a set of available c-bar{c} and b-bar{b} interquark interaction potentials. Besides, we quantify the effect of Melosh spin rotation, the Q^2-dependence of the diffractive slope and an uncertainty due to charm and bottom quark mass variations.
We discuss the impact of the planned upgrades of the HERA collider on the study of open heavy flavour and quarkonium production. New experimental techniques in charm physics are presented.
This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.
We investigate the momentum transfer dependence of differential cross sections $dsigma/dt$ in diffractive electroproduction of heavy quarkonia on proton targets. Model predictions for $dsigma/dt$ within the light-front QCD dipole formalism are based on a realistic model for a proper correlation between the impact parameter $vec b$ of a collision and color dipole orientation $vec r$. We demonstrate a significance of $vec b-vec r$ correlation by comparing with a standard simplification $vec{b}parallelvec{r}$, frequently used in the literature.