We discuss virtual photon scattering in the region dominated by BFKL exchange and report results for the cross sections at present and future e+ e- colliders.
We present a numerical estimate of the $gamma^* gamma^*$ total cross section at the designed 500 GeV $e^+e^-$ Linear Collider, based upon the BFKL Pomeron. We find that the event rate is substantial provided electrons scattered under small angles can be detected, and a measurement of this cross section provides an excellent test of the BFKL Pomeron.
One of the interesting portals linking a dark sector and the standard model (SM) is the kinetic mixing between the SM $U(1)_Y$ field with a new dark photon $A$ from a $U(1)_{A}$ gauge interaction. Stringent limits have been obtained for the kinetic mixing parameter $epsilon$ through various processes. In this work, we study the possibility of searching for a dark photon interaction at a circular $e^+e^-$ collider through the process $e^+ e^-to gamma A^{prime *} to gamma mu^+mu^-$. We find that the constraint on $epsilon^2$ for dark photon mass in the few tens of GeV range, assuming that the $mu^+mu^-$ invariant mass can be measured to an accuracy of $0.5%m_{A}$, can be better than $3times 10^{-6}$ for the proposed CEPC with a ten-year running at 3$sigma$ (statistic) level, and better than $2times 10^{-6}$ for FCC-ee with even just one-year running at $sqrt{s} = 240$ GeV, better than the LHC and other facilities can do in a similar dark photon mass range. For FCC-ee, running at $sqrt{s}=160$ GeV, the constraint can be even better.
A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.
The cross section for the reaction $e^+e^- to tbar{t} H$ depends sensitively on the top quark Yukwawa coupling $lambda_t$. We calculate the rate for $tbar{t}H$ production, followed by the decay $Hto bbar{b}$, for a Standard Model Higgs boson with 100 < m_H <130 GeV. We interface with ISAJET to generate QCD radiation, hadronization and particle decays. We also calculate the dominant $tbar{t}bbar{b}$ backgrounds from electroweak and QCD processes. We consider both semileptonic and fully hadronic decays of the $tbar{t}$ system. In our analysis, we attempt full reconstruction of the top quark and W boson masses in the generated events. The invariant mass of the remaining b-jets should show evidence of Higgs boson production. We estimate the accuracy with which $lambda_t$ can be measured at a linear e^+e^- collider. Our results, including statistical but not systematic errors, show that the top quark Yukawa coupling can be measured to 6-8 % accuracy with 1000 fb^{-1} at $E_{CM}=1 TeV$, assuming 100 % efficiency for b-jet tagging. The accuracy of the measurement drops to 17-22 % if only a 60 % efficiency for b-tagging is achieved.
The scalar top discovery potential has been studied with a full-statistics background simulation for sqrt(s) = 500 GeV and L = 500 fb-1. The simulation is based on a fast and realistic simulation of a TESLA detector. The large simulated data sample allowed the application of an Iterative Discriminant Analysis (IDA) which led to a significantly higher sensitivity than in previous studies. The effects of beam polarization on signal efficiency and individual background channels are studied using separate optimization with the IDA for both polarization states. The beam polarization is very important to measure the scalar top mixing angle and to determine its mass. Simulating a 180 GeV scalar top at minimum production cross section, we obtain Delta(m) = 1 GeV and Delta(cos(theta)) = 0.009.