Do you want to publish a course? Click here

Weakly-Coupled Higgs Bosons and Precision Electroweak Physics

78   0   0.0 ( 0 )
 Added by Howard Haber
 Publication date 1997
  fields
and research's language is English




Ask ChatGPT about the research

We examine the prospects for discovering and elucidating the weakly-coupled Higgs sector at future collider experiments. The Higgs search consists of three phases: (i) discovery of a Higgs candidate, (ii) verification of the Higgs interpretation of the signal, and (iii) precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics. An improvement in precision electroweak data at future colliders can play a useful role in confirming the theoretical interpretation of the Higgs search results.



rate research

Read More

We perform the fit of electroweak precision observables within the Standard Model with a 126 GeV Higgs boson, compare the results with the theoretical predictions and discuss the impact of recent experimental and theoretical improvements. We introduce New Physics contributions in a model-independent way and fit for the S, T and U parameters, for the $epsilon_{1,2,3,b}$ ones, for modified $Zbbar{b}$ couplings and for a modified Higgs coupling to vector bosons. We point out that composite Higgs models are very strongly constrained. Finally, we compute the bounds on dimension-six operators relevant for the electroweak fit.
Skyrmions are extended field configurations, initially proposed to describe baryons as topological solitons in an effective field theory of mesons. We investigate and confirm the existence of skyrmions within the electroweak sector of the Standard Model and study their properties. We find that the interplay of the electroweak sector with a dynamical Higgs field and the Skyrme term leads to a non-trivial vacuum structure with the skyrmion and perturbative vacuum sectors separated by a finite energy barrier. We identify dimension-8 operators that stabilise the electroweak skyrmion as a spatially localised soliton field configuration with finite size. Such operators are induced generically by a wide class of UV models. To calculate the skyrmion energy and radius we use a neural network method. Electroweak skyrmions are non-topological solitons but are exponentially long lived, and we find that the electroweak skyrmion is a viable dark matter candidate. While the skyrmion production cross section at collider experiments is suppressed, measuring the size of the Skyrme term in multi-Higgs-production processes at high-energy colliders is a promising avenue to probe the existence of electroweak skyrmions.
79 - Sibo Zheng 2019
We propose a novel approach of probing grand unification through precise measurements on the Higgs Yukawa couplings at the LHC. This idea is well motivated by the appearance of effective operators not suppressed by the mass scale of unification $M_{rm{U}}$ in realistic models of unification with the minimal structure of Yukawa sector. Such operators modify the Higgs Yukawa couplings in correlated patterns at scale $M_{rm{U}}$ that hold up to higher-order corrections. The coherences reveal a feature that, the deviation of tau Yukawa coupling relative to its standard model value at the weak scale is the largest one among the third-generation Yukawa couplings. This feature, if verified by the future LHC, can serve as a hint of unification.
88 - Fenfen An , Yu Bai , Chunhui Chen 2018
The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider~(CEPC) is one of such proposed Higgs factories. The CEPC is an $e^+e^-$ circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 100~km in circumference, it will operate at a center-of-mass energy of 240~GeV as the Higgs factory. In this paper, we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا