Do you want to publish a course? Click here

MSW Without Matter

51   0   0.0 ( 0 )
 Added by Terry Goldman
 Publication date 1996
  fields
and research's language is English
 Authors T. Goldman




Ask ChatGPT about the research

We examine the effects of a scalar field, coupled only to neutrinos, on oscillations among weak interaction current eigenstates. The existence of a real scalar field is manifested as effective masses for the neutrino mass eigenstates, the same for $ bar$ as for $ $. Under some conditions, this can lead to a vanishing of $delta m^2$, giving rise to MSW-like effects. We present an idealized example and show that it may be possible to resolve the apparent discrepancy in spectra required by r-process nucleosynthesis in the mantles of supernovae and by Solar neutrino solutions.



rate research

Read More

211 - Q.Y. Liu , B.L. Chen , J. Zhou 2005
We analyze the existing solar neutrino experiment data and show the allowed regions. The result from SNOs salt phase itself restricts quite a lot the allowed regions area. Reactor neutrinos play an important role in determining oscillation parameters. KamLAND gives decisive conclusion on the solution to the solar neutrino puzzle, in particular, the spectral distortion in the 766.3 Ty KamLAND data gives another new improvement in the constraint of solar MSW-LMA solutions. We confirm that at 99.73% C.L. the high-LMA solution is excluded.
The existence of dark matter particles that carry phenomenologically relevant self-interaction cross sections mediated by light dark sector states is considered to be severely constrained through a combination of experimental and observational data. The conclusion is based on the assumption of specific dark matter production mechanisms such as thermal freeze-out together with an extrapolation of a standard cosmological history beyond the epoch of primordial nucleosynthesis. In this work, we drop these assumptions and examine the scenario from the perspective of the current firm knowledge we have: results from direct and indirect dark matter searches and cosmological and astrophysical observations, without additional assumptions on dark matter genesis or the thermal state of the very early universe. We show that even in the minimal set-up, where dark matter particles self-interact via a kinetically mixed vector mediator, a significant amount of parameter space remains allowed. Interestingly, however, these parameter regions imply a meta-stable, light mediator, which in turn calls for modified search strategies.
We present a theory of neutrino oscillations in a dense medium which goes beyond the effective matter potential used in the description of the MSW effect. We show how the purity of the neutrino state is degraded by neutrino interactions with the environment and how neutrino--matter interactions can be a source of decoherence. We present new oscillation formulae for neutrinos interacting with leptons and carry out a numerical analysis which exhibits deviations from the MSW formulae for propagation through the Earth of ultra-high energy neutrinos. In particular, we show that at high density and/or high neutrino energy, the vanishing transition probabilities derived for MSW effect, are non zero when the scattering is taken into account.
99 - F. del Aguila , M. Zralek 2002
We review the propagation of light neutrinos in matter assuming that their mixing with heavy neutrinos is close to present experimental limits. The phenomenological implications of the non-unitarity of the light neutrino mixing matrix for neutrino oscillations are discussed. In particular we show that the resonance effect in neutrino propagation in matter persists, but for slightly modified values of the parameters and with the maximum reduced by a small amount proportional to the mixing between light and heavy neutrinos squared.
108 - Shinya Kanemura 2017
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken $Z_2$ symmetry that stabilizes the dark matter candidate (the lightest $Z_2$-odd particle). In this model, $Z_2$-odd particles play an important role to generate the mass of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strong first-order phase transition, which is required for the electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for the baryogenesis. Therefore, three problems in the standard model, namely absence of neutrino masses, the dark matter candidate, and the mechanism to generate baryon asymmetry of the Universe, may be simultaneously resolved at the TeV-scale. Phenomenology of this model is also discussed briefly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا