Do you want to publish a course? Click here

How to Search for Pentaquarks in High Energy Hadronic Interactions

50   0   0.0 ( 0 )
 Added by Murray Moinester
 Publication date 1995
  fields
and research's language is English




Ask ChatGPT about the research

The strange-anticharmed Pentaquark is a $uudbar{c}s$ or $uddbar{c}s$ five-quark baryon that is expected to be either a narrow resonance, or possibly even stable against strong and electromagnetic decay. We describe this hyperon here, its structure, binding energy and lifetime, resonance width, production mechanisms, production cross sections, and decay modes. We describe techniques to reduce backgrounds in search experiments and to optimize the conditions for Pentaquark observation. Possibilities for enhancing the signal over background in Pentaquark searches are investigated by examining predictions for detailed momentum and angular distributions in multiparticle final states. General model-independent predictions are presented as well as those from two models: a loosely bound $D_{s}^-N$ molecule and a strongly-bound five-quark system. Fermilab E791 data, currently being analyzed, may have marginal statistics for showing definitive signals. Future experiments in the spirit of the recent CHARM2000 workshop, such as FNAL E781 and CERN CHEOPS with $10^6-10^7$ reconstructed charmed baryon events, should have sensitivity to determine whether or not the Pentaquark exists.

rate research

Read More

44 - M. Schmelling 2005
The bulk of inelastic hadronic interactions is characterized by longitudinal phase space and exponentially damped transverse momentum spectra. A simple model with only a single adjustable parameter is presented, making it a very convenient tool for systematic studies, which gives a surprisingly good description of pA-collisions at 920 GeV beam energy.
557 - F.W. Bopp 1996
A simple phenomenological introduction to the physics of multi-pomeron exchange amplitudes in connection with the Abramovski-Gribov-Kancheli (AGK) cutting rules is given. The AGK cutting rules are applied to obtain qualitative and quantitative predictions on multiparticle production at high energies. On this basis, particle production in hadron-hadron scattering, photoproduction, and in particular the transition to deep-inelastic scattering is discussed.
The functional dependence of the high-energy observables of total cross section and slope parameter on the sizes of the colliding hadrons predicted by the model of the stochastic vacuum and the corresponding relations used in the geometric model of Povh and Hufner are confronted with the experimental data. The existence of a universal term in the expression for the slope, due purely to vacuum effects, independent of the energy and of the particular hadronic system, is investigated. Accounting for the two independent correlation functions of the QCD vacuum, we improve the simple and consistent description given by the model of the stochastic vacuum to the high-energy pp and pbar-p data, with a new determination of parameters of non-perturbative QCD. The increase of the hadronic radii with the energy accounts for the energy dependence of the observables.
We apply the dipole formalism that has been developed to describe low-x deep inelastic scattering to the case of ultra-high energy real photons with nucleon and nuclear targets. We hope that there will be future modeling applications in high-energy particle astrophysics. We modify the dipole model of McDermott, Frankfurt, Guzey, and Strikman (MFGS) by fixing the cross section at the maximum value allowed by the unitarity constraint whenever the dipole model would otherwise predict a unitarity violation. We observe that, under reasonable assumptions, a significant fraction of the real photon cross section results from dipole interactions where the QCD coupling constant is small, and that the MFGS model is consistent with the Froissart bound. The resulting model predicts a rise of the cross section of about a factor of 12 when the the photon energy is increased from $10^{3}$ GeV to $10^{12}$ GeV. We extend the analysis to the case of scattering off a $^{12}$C target. We find that, due to the low thickness of the light nuclei, unitarity for the scattering off individual nucleons plays a larger role than for the scattering off the nucleus as a whole. At the same time the proximity to the black disk limit results in a substantial increase of the amount of nuclear shadowing. This, in turn, slows down the rate of increase of the total cross section with energy as compared to the proton case. As a result we find that the $^{12}$C nuclear cross section rises by about a factor of 7 when the photon energy is increased from $10^{3}$ GeV to $10^{12}$ GeV. We also find that the fraction of the cross section due to production of charm reaches 30% for the highest considered energies with a $^{12}$C target.
53 - V. Kundrat , M. Lokajicek 2005
The commonly used West and Yennie model approach to the description of the interference between Coulomb and hadronic scattering of nucleons is critically examined and its deficiencies are clarified. The preference of the more general eikonal model approach is summarized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا